Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term thermo-mechanical properties of the continental lithosphere

Abstract

Simple thermo-elastic models successfully explain flexure observations from oceanic lithosphere and are consistent with predictions based on empirical yield stress envelopes for the deformation of olivine. The response of the continental lithosphere, in contrast, has frequently been modelled as a Maxwell viscoelastic solid. By plotting estimates of flexural rigidity against the age of the continental lithosphere at the time of loading, an estimate of which is defined by the radiometric age of the underlying basement, we report here that flexural rigidities for the continental lithosphere are compatible with oceanic flexure results. Analogous to the increase of rigidity with age away from a mid-oceanic ridge, continental rigidities appear to increase with age following a major thermal event. The high rigidities (1032 dyn cm) associated with Archaean/Proterozoic terrains and modelling of plate deformation with yield-stress envelopes appropriate for the continents suggest that the long-term thermal behaviour of continental lithosphere is governed by a coolong plate model with a 200–250-km plate thickness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watts, A. B., Karner, G. D. & Steckler, M. S. Phil. Trans. R. Soc. A305, 249–281 (1982).

    Article  ADS  Google Scholar 

  2. Beaumont, C. Geophys. J. R. astr. Soc. 65, 291–329 (1981).

    Article  ADS  Google Scholar 

  3. Watts, A. B. Nature 297, 460–474 (1982).

    ADS  Google Scholar 

  4. Beaumont, C. Geophys. J. R. astr. Soc. 55, 471–498 (1978).

    Article  ADS  Google Scholar 

  5. Sleep, N. H. Geophys. J. R. astr. Soc. 24, 352–350 (1971).

  6. Watts, A. B. J. geophys. Res. 83, 5989–6004 (1978).

    Article  ADS  Google Scholar 

  7. Watts, A. B., Bodine, J. H. & Steckler, M. S. J. geophys. Res. 85, 6369–6376 (1980).

    Article  ADS  Google Scholar 

  8. Cazenave, A., Lago, B., Dominti, K. & Lambeck, K. Geophys. J.R. astr. Soc. 63, 233–354 (1980).

    Article  ADS  Google Scholar 

  9. Caldwell, J. G. & Turcotte, D. L. J. geophys. Res. 84, 7572–7576 (1979).

    Article  ADS  Google Scholar 

  10. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  11. Walcott, R. I. J. geophys. Res. 75, 3941–3954 (1970).

    Article  ADS  Google Scholar 

  12. Karner, G. D. & Watts, A. B. J. geophys. Res. (in the press).

  13. Sleep, N. H. & Sloss, L. L. J. geophys. Res. 83, 5815–5819 (1978).

    Article  ADS  Google Scholar 

  14. McCallister, R. H., Boctor, N. Z. & Hinze, W. J. J. geophys. Res. 83, 5825–5831 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Van der Voo, R. & Watts, D. R. J. geophys. Res. 83, 5844–5848 (1978).

    Article  ADS  Google Scholar 

  16. Lewis, B. T. R. & Dorman, L. M. J. geophys. Res. 75, 3367–3386 (1970).

    Article  ADS  Google Scholar 

  17. McNutt, M. K. & Parker, R. L. Science 199, 773–775 (1978).

    Article  ADS  CAS  Google Scholar 

  18. McNutt, M. K. J. geophys. Res. 85, B11, 6377–6396 (1980).

    Article  ADS  Google Scholar 

  19. Stephanson, R. & Beaumont, C. in Mechanism of Continental Drift and Plate Tectonics (eds Davies, G. F. & Runcorn, R. K.) 111–122, (Academic, New York, 1980).

    Google Scholar 

  20. Forsyth, D. W. Rev. Geophys. Space Phys. 17, 1109–1114 (1979).

    Article  ADS  Google Scholar 

  21. Forsyth, D. W. EOS 62, 1032 (1981).

    Google Scholar 

  22. Haxby, W. F., Turcotte, D. L. & Bird, J. M. Tectonophysics 36, 57–75 (1976).

    Article  ADS  Google Scholar 

  23. Molnar, P. & Tapponnier, P. Earth planet. Sci. Lett. 52, 107–114 (1981).

    Article  ADS  Google Scholar 

  24. Sandwell, D. T. & Schubert, G. J. geophys. Res. 87, 3949–3958 (1982).

    Article  ADS  Google Scholar 

  25. Oxburgh, E R. Phil. Trans R. Soc. A301, 337–346 (1981).

    Article  ADS  Google Scholar 

  26. Davies, G. F. & Strebeck, J. W. Geophys. J. R. astr. Soc. 69, 623–634 (1982).

    Article  ADS  Google Scholar 

  27. Pollack, H. N. A. Rev. Earth planet Sci. 10, 459–481 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Vitorello, I. & Pollack, H. N. J. geophys. Res. 85, 983–995 (1980).

    Article  ADS  Google Scholar 

  29. Gurney, J. J., Harte, B. & Cox, K. G. Phys. Chem. Earth 9, 507–523 (1977).

    Article  Google Scholar 

  30. Eggler, D. H., McCallum, M. E. & Smith, C. B. in Proc. 2nd int. Kimberlite Conf., Santa Fe (American, Washington, 1977).

    Google Scholar 

  31. Toksoz, M. N. & Anderson, D. L. J. geophys. Res. 71, 1649–1658 (1966).

    Article  ADS  Google Scholar 

  32. Jordan, T. H. Rev. Geophys. Space Phys. 13, 1–12 (1975).

    Article  ADS  Google Scholar 

  33. Beaumont, C., Keen, C. E. & Boutillier, R. Geophys. J. R. astr. Soc. 70, 667–715 (1982).

    Article  ADS  Google Scholar 

  34. Brunet, M. F. & Le Pichon, X. J. geophys. Res. 87, 8547–8560 (1982).

    Article  ADS  Google Scholar 

  35. Dewey, J. F. & Pitman, W. C. Phil. Trans. R. Soc. A305, 145–148 (1982).

    Article  ADS  Google Scholar 

  36. Turcotte, D. in Geodynamics Series Vol. 1 (eds Bally, A. W. Bender, P. L. McGetchin, T. R. & Walcott, R. I.) (AGU, Washington DC, 1980).

    Google Scholar 

  37. Sclater, J. G. & Christie, P. A. J. geophys. Res. 85, 3711–3739 (1980).

    Article  ADS  Google Scholar 

  38. McKenzie, D. Earth planet. Sci. Lett. 40, 25–32 (1978).

    Article  ADS  Google Scholar 

  39. Goetze, C. & Evans, B. Geophys. J. R. astr. Soc. 59, 463–478 (1979).

    Article  ADS  Google Scholar 

  40. Goetze, C. Phil. Trans. R. Soc. A288, 99–119 (1978).

    Article  ADS  CAS  Google Scholar 

  41. Bodine, J. H., Steckler, M. S. & Watts, A. B. J. geophys. Res. 86, 3695–3707 (1981).

    Article  ADS  Google Scholar 

  42. Nicolaysen, L. O., Hart, R. J. & Gale, N. H. J. geophys. Res. 86, 10653–10661 (1981).

    Article  ADS  CAS  Google Scholar 

  43. Zhamaletdinov, A. A. in Deep Electromagnetic Sounding using the MGD Impulse Generator (in Russian) (ed. Kirova, S. M.) 35–46 (The Geological Institute (Kola Branch) of the Soviet Academy of Sciences, Apatity, 1982).

    Google Scholar 

  44. Brace, W. F. & Kohlstedt, D. L. J. geophys. Res. 85, 6248–6252 (1980).

    Article  ADS  Google Scholar 

  45. Sollogub, V. B. et al. Tectonophysics 20, 1–33 (1973).

    Article  ADS  Google Scholar 

  46. Chowdhury, K. R. & Hargraves, R. B. Nature 291, 648–650 (1981).

    Article  ADS  Google Scholar 

  47. Wernke, B. Nature 291, 645–648 (1981).

    Article  ADS  Google Scholar 

  48. Smithson, S. B., Brewer, J., Kaufman, S. & Oliver, J. Geology 6, 648–652 (1978).

    Article  ADS  Google Scholar 

  49. Soper, N. J. & Barber, A. J. J. geol. Soc. Lond. 139, 127–138 (1982).

    Article  Google Scholar 

  50. Smythe, D. K. et al. Nature 299, 338–341 (1982).

    Article  ADS  Google Scholar 

  51. Chen, W-P. & Molnar, P. J. geophys. Res. 82, 2945–2969 (1977).

    Article  ADS  Google Scholar 

  52. Gupta, H. K. & Bhatia, S. C. in Geodynamics Series Vol. 3 (eds Gupta, H. K. & Delaney, F. M.) (AGU, Washington DC, 1981).

    Google Scholar 

  53. Ni, J. & Barazangi, M. Geophys. J. R. astr. Soc. 72, 665–689 (1983).

    Article  ADS  Google Scholar 

  54. Bird, P. Tectonophysics 50, 307–336 (1978b).

    Article  ADS  Google Scholar 

  55. Isacks, B. L. & Barazangi, M. in Island Arcs, Deep Sea Trenches and Back-arc Basins (Maurice Ewing Ser. 1, AGU, Washington DC, 1977).

    Google Scholar 

  56. Banda, E. & Vegas, R. Pap. at: Workshop Evolution of Extensional Basins within Regions of Compression, with Emphasis on the Intra-carpathians, Veszpem, Hungary (1982).

    Google Scholar 

  57. Wiens, D. A. & Stein, S. J. geophys. Res. (submitted).

  58. Fountain, D. M. & Salisbury, M. H. Earth planet. Sci. Lett. 56, 263–277 (1981).

    Article  ADS  Google Scholar 

  59. Kahle, H-G., Klingele, E., Mueller, St. & Egloff, R. Pure Appl. Geophys. 114, 479–494 (1976).

    Article  ADS  Google Scholar 

  60. Diment, W. H., Urban, T. C. & Revetta, R. A. in The Nature of the Solid Earth (eds Robertson, E. C. et al.) (McGraw-Hill, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karner, G., Steckler, M. & Thorne, J. Long-term thermo-mechanical properties of the continental lithosphere. Nature 304, 250–253 (1983). https://doi.org/10.1038/304250a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304250a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing