Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ nick-translation distinguishes between active and inactive X chromosomes

Abstract

Template-active regions of chromatin are structurally distinct from nontranscribing segments of the genome. Recently, it was suggested that the conformation of active genes which renders them sensitive to DNase I may be maintained even in fixed mitotic chromosomes. We have developed a technique of mitotic cell fixation and DNase I-directed nick-translation which distinguishes between active and inactive X chromosomes. We report here that Gerbillus gerbillus (rodent) female cells contain easily identified composite X chromosomes each of which includes the original X chromosome flanked by two characteristic autosomal segments. After nick-translation the active X chromosome in each cell is labelled specifically in both the autosomal and X-chromosomal regions. The inactive X chromosome is labelled only in the autosomal regions and in a small early replicating band within the late replicating ‘original X’ chromosome. Our technique opens the possibility of following the kinetics of X-chromosome inactivation and reactivation during embryogenesis, studying active genes in the inactive X chromosome and mapping tissue-specific gene clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weintraub, H. & Groundine, M. Science 193, 848–856 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Bellard, M., Gannon, F. & Chambon, P. Cold Spring Harb. Symp. quant. Biol. 42, 729–791 (1977).

    Google Scholar 

  3. Gottesfeld, J. & Partington, G. Cell 12, 953–962 (1977).

    Article  CAS  Google Scholar 

  4. Garel, A. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 73, 3966–3970 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Panet, A. & Cedar, H. Cell 11, 933–940 (1977).

    Article  CAS  Google Scholar 

  6. Garel, A., Zolan, M. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 74, 4867–4871 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Stalder, J., Groundine, M., Dodgson, J.B., Engel, J.D. & Weintraub, H. Cell 19, 973–980 (1980).

    Article  CAS  Google Scholar 

  8. Gazit, B., Cedar, H., Lehrer, I. & Voss, R. Science 217, 648–650 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Wahrman, J., Richler, C., Neufeld, E. & Friedmann, A. Cytogenet. Cell Genet. 35, 161–181 (1983).

    Article  CAS  Google Scholar 

  10. Zakharov, A. F. & Egolina, N. A. Chromosoma 38, 341–365 (1972).

    Article  CAS  Google Scholar 

  11. Latt, S. A. Proc. natn. Acad. Sci. U.S.A. 70, 3395–3399 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Sarto, G. E., Therman, E. & Patau,, K. Clin. Genet. 6, 289–293 (1974).

    Article  CAS  Google Scholar 

  13. McKusick, V. A. & Chase, G. A. A. Rev. Genet. 7, 435–473 (1973).

    Article  CAS  Google Scholar 

  14. Shapiro, L. J., Mohandas, T., Weiss, R. & Romeo, G. Science 204, 1224–1226 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Müller, C. R., Westerveld, A., Beate Migl, B., Franke, W. & Roppers, H. H. Hum. Genet. 54, 201–204 (1980).

    Article  Google Scholar 

  16. Willard, H. F. & Latt, S. A. Am. J. hum. Genet. 28, 213–227 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Therman, E., Sarto, G.E., Distèche, C. & Denniston, C. Chromosoma 59, 137–145 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerem, BS., Goitein, R., Richler, C. et al. In situ nick-translation distinguishes between active and inactive X chromosomes. Nature 304, 88–90 (1983). https://doi.org/10.1038/304088a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304088a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing