Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates

Abstract

In eukaryotic cells, secretory proteins and glycoproteins migrate from the rough endoplasmic reticulum, their site of synthesis, through Golgi vesicles before being released from the cell1–9. Cellular and viral integral plasma membrane glycoproteins are co-translationally inserted into the rough endoplasmic reticulum membrane and follow a similar pathway to the cell surface2,3,10–15. Previous studies using endoglycosidase H (Endo H) suggested that in rat hepatoma cells the vesicular stomatitis virus (VSV) G protein, albumin and transferrin migrate from the rough endoplasmic reticulum to the Golgi apparatus at different rates16. Here we show directly that in human hepatoma HepG2 cells, five secreted proteins mature from the rough endoplasmic reticulum to Golgi vesicles at characteristic rates which differ at least threefold. The results are incompatible with bulk-phase movement of the luminal contents of the endoplasmic reticulum, and suggest that there is a membrane-bound receptor that selectively mediates the transport of secretory proteins from the rough endoplasmic reticulum to the Golgi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Palade, G. Science 109, 347–358 (1975).

    Article  ADS  Google Scholar 

  2. Lodish, H. F., Braell, W., Schwartz, A., Strous, G. & Zilberstein, A. Int. Rev. Cytol. Suppl. 12, 241–307 (1981).

    Google Scholar 

  3. Sabatini, D. D., Kriebich, G., Morimoto, T. & Adesnik, M. J. Cell Biol. 92, 1–22 (1982).

    Article  CAS  Google Scholar 

  4. Fahrquahr, M. G. & Palade, G. J. Cell Biol. 91, 77s–106s (1981).

    Article  Google Scholar 

  5. Jamieson, J. D. & Palade, G. E. J. Cell Biol. 34, 577–596 (1967).

    Article  CAS  Google Scholar 

  6. Jamieson, J. D. & Palade, G. E. J. Cell Biol. 34, 597–615 (1967).

    Article  CAS  Google Scholar 

  7. Geuze, J.J., Slot, J. W. & Tokuyasu, K. T. J. Cell Biol. 82, 697–707 (1979).

    Article  CAS  Google Scholar 

  8. Ravazzola, M., Perrelet, A., Roth, J. & Orci, L. Proc. natn. Acad. Sci. U.S.A. 78, 5661–5664 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Franz, C. P., Croze, E.M., Morre, J. & Schrieber, G. Biochim. biophys. Acta 678, 395–402 (1981).

    Article  CAS  Google Scholar 

  10. Bergmann, J. E., Tokuyasu, K. T. & Singer, S. J. Proc. natn. Acad. Sci. U.S.A. 78, 1746–1750 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Croze, E. M. & Morre, D.J. Proc. natn. Acad. Sci. U.S.A. 78, 1547–1551 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Green, J., Griffiths, G., Louvard, D., Quinn, P. & Warren, G. J. molec. Biol. 152, 663–698 (1981).

    Article  CAS  Google Scholar 

  13. Wehland, J., Willingham, M. C., Gallo, M. & Pastan, I. Cell 28, 831–841 (1982).

    Article  CAS  Google Scholar 

  14. Scheele, G. Am. J. Physiol. 238, G467–G477 (1980).

    CAS  PubMed  Google Scholar 

  15. Gumbiner, B. & Kelly, R. B. Cell 28, 51–59 (1982).

    Article  CAS  Google Scholar 

  16. Stroud, G. J. A. M. & Lodish, H. F. Cell 22, 709–717 (1980).

    Article  Google Scholar 

  17. Knowles, B. B., Howe, C. D. & Aden, D. P. Science 209, 497–499 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Patel, F. & Minta, J. D. J. Immun. 122, 1582–1586 (1979).

    CAS  PubMed  Google Scholar 

  19. Ooi, Y. M. & Colton, H. R. J. Immun. 123, 2494–2498 (1979).

    CAS  PubMed  Google Scholar 

  20. Kornfeld, R. & Kornfeld, S. in The Biochemistry of Glycoproteins and Proteoglycans (ed. Lennarz, W.J.) 1–34 (Plenum, New York, 1980).

    Book  Google Scholar 

  21. Tarentino, A. L. & Maley, F. J. biol. Chem. 249, 811–816 (1974).

    CAS  PubMed  Google Scholar 

  22. Tai, T., Yamashita, K. & Kobayta, A. Biochem. biophys. Res. Commun. 78, 434–441 (1977).

    Article  CAS  Google Scholar 

  23. Robbins, P. W., Hubbard, S. C., Turco, S. J. & Wirth, D. F. Cell 12, 893–900 (1977).

    Article  CAS  Google Scholar 

  24. Godelaine, D., Spiro, M.J. & Spiro, R. G. J. biol. Chem. 256, 10161–10168 (1981).

    CAS  PubMed  Google Scholar 

  25. Rothman, J. E. Science 213, 1212–1219 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Tabas, I. & Kornfeld, S. J. biol. Chem. 254, 11655–11663 (1979).

    CAS  PubMed  Google Scholar 

  27. Tulsiani, D. R. P., Hubbard, S. C., Robbins, P. W. & Touster, O. J. biol. Chem. 257, 3660–3668 (1982).

    CAS  PubMed  Google Scholar 

  28. Rothman, J. E., Bursztyn-Pettegrew, H. & Fine, R. E. J. Cell Biol. 86, 162–171 (1980).

    Article  CAS  Google Scholar 

  29. Fitting, T. & Kabat, D. J. biol. Chem. 257, 14011–14017 (1982).

    CAS  PubMed  Google Scholar 

  30. Schwartz, A. L., Fridovich, S. & Lodish, H. F. J. biol. Chem. 257, 4230–4237 (1982).

    CAS  PubMed  Google Scholar 

  31. Owen, M. J., Kissonerghis, A.-M. & Lodish, H. F. J. biol. Chem. 255, 9678–9684 (1980).

    CAS  PubMed  Google Scholar 

  32. Zilberstein, A., Snider, M., Porter, M. & Lodish, H. F. Cell 21, 417–427 (1980).

    Article  CAS  Google Scholar 

  33. Ledford, B. E. & Davis, D. F. J. biol. Chem. 258, 3304–3308 (1983).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodish, H., Kong, N., Snider, M. et al. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature 304, 80–83 (1983). https://doi.org/10.1038/304080a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304080a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing