Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Not more than 117 base pairs of 5′-flanking sequence are required for inducible expression of a human IFN-α gene

Abstract

Interferon genes are usually only expressed after induction1. In the accompanying paper we have shown that the accumulation of mRNA after viral induction is due to activation of transcription, rather than to reduction of turnover, and that the regulation of the α-interferon (IFN-α) gene is mediated by a segment of 5′-flanking region of not more than 700 base pairs (bp)2. To delineate the sequences required for induction, a set of 5′ deletion mutants of the human IFN-α1 gene was constructed and the expression of the truncated genes in mouse L cells was monitored after viral or mock infection. We report that not more than 117 bp of 5′-flanking sequence were required for induced expression of the gene. A purine-rich sequence of 42 bp located immediately downstream of position −117 is highly conserved in all known human α-interferon genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stewart, W. E. II The Interferon System (Springer, New York, 1979).

    Book  Google Scholar 

  2. Weidle, U. & Weissmann, C. Nature 303, 442–446 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Nagata, S., Mantei, N. & Weissmann, C. Nature 287, 401–408 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Frischauf, A. M., Garoff, H. & Lehrach, H. Nucleic Acids Res. 8, 5541–5549 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heffron, F., So, M. & McCarthy, B. J. Proc. natn. Acad. Sci. U.S.A. 75, 6012–6016 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Wilkie, N. M. et al. Nucleic Acids Res. 7, 859–877 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graham, F. L. & van der Eb, A. J. Virology 52, 456–467 (1973).

    Article  CAS  PubMed  Google Scholar 

  9. Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Cell 14, 725–731 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Szybalski, W., Szybalska, E. H. & Ragni, G. Monogr. natn. Cancer Inst. 7, 75 (1962).

    Google Scholar 

  11. Berk, A. H. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Weaver, R. F. & Weissmann, C. Nucleic Acids Res. 7, 1175–1193 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dierks, P., van Ooyen, A., Mantei, N. & Weissmann, C. Proc. natn. Acad. Sci. U.S.A. 78, 1411–1415 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Mantei, N. & Weissmann, C. Nature 297, 128–132 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Streuli, M. et al. Proc. natn. Acad. Sci. U.S.A. 78, 2848–2852 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Parsons, J. T., Coffin, J. M., Haroz, R. K., Bromley, P. A. & Weissmann, C. J. Virol. 11, 761–774 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson, D. E. J. Virol. 2, 1–6 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thacore, H. & Youngner, J. S. J. Virol. 6, 42–48 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brinster, R. L., Chen, H. Y., Warren, R., Sarthy, A. & Palmiter, R. D. Nature 296, 39–42 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Pelham, H. R. B. Cell 30, 517–528 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Dierks, P. et al. Cell 32, 695–706 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. McKnight, S. L. & Kingsbury, R. Science 217, 316–324 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Fromm, M. & Berg, P. J. molec. appl. Genet. 1, 457–481 (1982).

    CAS  Google Scholar 

  24. Hen, R., Sassone-Corsi, P., Corden, J., Gaub, M. B. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 79, 7132–7136 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Benoist, C. & Chambon, P. Nature 290, 304–310 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Weissmann, C. et al. Phil. Trans. R. Soc. B299, 7–28 (1982).

    Article  CAS  Google Scholar 

  27. Lawn, R. M. et al. Science 212, 1159–1162 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lawn, R. M. et al. Proc. natn. Acad. Sci. U.S.A. 78, 5435–5439 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Ullrich, A., Gray, A., Goeddel, D. V. & Dull, T. J. J. molec. Biol. 156, 467–486 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Ohno, T. & Taniguchi, T. Nucleic Acids Res. 10, 967–977 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hauser, H. et al. Nature 297, 650–654 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Zinn, K., Mellon, P., Ptashne, M. & Maniatis, T. Proc. natn. Acad. Sci. U.S.A. 79, 4897–4901 (1982).

    Article  ADS  CAS  Google Scholar 

  33. Canaani, D. & Berg, P. Proc. natn. Acad. Sci. U.S.A. 79, 5166–5170 (1982).

    Article  ADS  CAS  Google Scholar 

  34. Ohno, S. & Taniguchi, T. Proc. natn. Acad. Sci. U.S.A. 78, 5305–5309 (1981).

    Article  ADS  CAS  Google Scholar 

  35. Degrave, W., Derynck, R., Tavernier, J., Haegeman, G. & Fiers, W. Gene 14, 137–143 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Houghton, H. et al. Nucleic Acids Res. 9, 247–266 (1980).

    Article  Google Scholar 

  37. Lawn, R. M. et al. Nucleic Acids Res. 9, 1045–1052 (1981).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tavernier, J., Gheysin, D., Duerinck, F., Van der Heiden, J. & Fiers, W. Nature 301, 634–636 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  PubMed  Google Scholar 

  40. Maniatis, T., Fritsch, E. F. & Sambrook, J. (eds) Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

  41. Auffray, C. & Rougeon, F. Eur. J. Biochem. 107, 303–314 (1980).

    Article  CAS  PubMed  Google Scholar 

  42. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragg, H., Weissmann, C. Not more than 117 base pairs of 5′-flanking sequence are required for inducible expression of a human IFN-α gene. Nature 303, 439–442 (1983). https://doi.org/10.1038/303439a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303439a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing