Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic dissection of monoamine neurotransmitter synthesis in Drosophila

Abstract

The biogenic monoamine neurotransmitters octopamine, dopamine and serotonin have been detected in nervous tissue from many insects1. We report here that intact Drosophila melanogaster brains, when incubated with the radioactive amino acids tyrosine and tryptophan, synthesized and accumulated labelled monoamines. In two mutant strains monoamine synthesis was abnormal. The pero mutation abolishes the normal circadian rhythm2–4. Brains from pero flies, when incubated in tritiated tyrosine, accumulated one-third as much labelled octopamine as did brains from wild-type flies, but had normal dopamine and serotonin synthesis. In contrast, dopa decarboxylase (Ddc) mutations5,6 decreased dopamine and serotonin synthesis but did not affect octopamine synthesis. These results suggest that there are two different aromatic amino acid decarboxylases in Drosophila brains, one that decarboxylates L-dopa and 5-hydroxytryptophan and another that decarboxylates tyrosine. Direct measurement of L-dopa, 5-hydroxytryptophan and tyrosine decarboxylase activities in the different strains confirmed this suggestion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klemm, N. Prog. Neurobiol. 7, 99–169 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Konopka, R. J. & Benzer, S. Proc. natn. Acad. Sci. U.S.A. 68, 2112 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Konopka, R. J. Fedn Proc. 38, 2602–2605 (1979).

    CAS  Google Scholar 

  4. Smith, R. F. & Konopka, R. S. Molec. gen. Genet. 183, 243–251 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Wright, T. R. F., Hodgetts, R. B. & Sherald, A. F. Genetics 84, 267–285 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wright, T. R. F., Bewley, G. C. & Sherald, A. F. Genetics 84, 287–310 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sekeris, C. E. & Karlson, P. Biochim. biophys. Acta 62, 103–113 (1962).

    Article  CAS  PubMed  Google Scholar 

  8. Karlson, P. & Sekeris, C. E. Recent Prog. Horm. Res. 22, 473–502 (1966).

    CAS  PubMed  Google Scholar 

  9. Sekeris, C. E. & Karlson, P. Pharmac. Rev. 18, 89–94 (1966).

    CAS  Google Scholar 

  10. Lunan, K. D. & Mitchell, H. K. Archs Biochem. Biophys. 132, 450–456 (1969).

    Article  CAS  Google Scholar 

  11. Dewhurst, S. A., Croker, S. G., Ikeda, K. & McCaman, R. E. Comp. Biochem. Physiol. 43 B, 975–981 (1972).

    Article  CAS  Google Scholar 

  12. Wright, T. R. F. Am. Zool. 17, 707–721 (1977).

    Article  CAS  Google Scholar 

  13. Clark, W. C., Pass, P. S., Bhagyalakshmi, V. & Hodgetts, R. B. Molec. gen. Genet. 162, 287–297 (1978).

    Article  CAS  Google Scholar 

  14. Sekeris, C. E. Z. Physiol. Chem. 332, 70–78 (1962).

    Article  Google Scholar 

  15. Judd, B. H., Shen, M. W. & Kaufmann, T. C. Genetics 71, 139–156 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Axelrod, J. & Saavedra, J. M. Nature 265, 501–504 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kupfermann, I. A. Rev. Neurosci. 2, 447–465 (1979).

    Article  CAS  Google Scholar 

  18. Ikeda, K. & Kaplan, W. D. Proc. natn. Acad. Sci. U.S.A. 66, 765–772 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Hildebrand, J. G., Barker, D. L., Herbert, E. & Kravitz, E. A. J. Neurobiol. 2, 231–246 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Barker, D. L., Molinoff, P. B. & Kravitz, E. A. Nature new Biol. 236, 61–63 (1972).

    Article  CAS  PubMed  Google Scholar 

  21. Eadie, G. S. Science 116, 329–330 (1952).

    Article  Google Scholar 

  22. Hofstee, B. H. J. Science 116, 329–331 (1952).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. McCaman, M. W., McCaman, R. E. & Lees, G. J. Analyt. Biochem. 45, 242–252 (1972).

    Article  CAS  PubMed  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  25. Cleland, W. W. Adv. Enzym. 29, 1–32 (1967).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingstone, M., Tempel, B. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila. Nature 303, 67–70 (1983). https://doi.org/10.1038/303067a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303067a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing