Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gravitational anisotropies of gyromagnetic ratios and tests of general relativity

Abstract

It is a direct consequence of the Einstein equivalence principle (EEP) that all atomic clocks will run at the same rate if situated at the same point in space-time. This prediction of a universal gravitational redshift is a property of any self-consistent metric theory of gravity1. The class of experiments considered here essentially involves a comparison of two clocks, one of which is a quartz crystal stabilized to a caesium-beam atomic frequency standard, and the other, more important for this discussion, is a NMR clock, for which the ‘ticks’ are provided by the free precession of a sample of polarized nuclear spins in a stable and uniform magnetic field. Two experimental null results have been reported, one by Hughes2 and the other by Drever3. We point out that some measurements already exist for spin 1/2 systems which can put tighter limits on anisotropic precession frequencies than the Hughes–Drever results, and we suggest an experimental technique that should allow a further improvement in precision by up to six orders of magnitude. Apart from the interest to gravitation physics these results are also important for high precision metrology and the provision of standards of magnetic flux density and electric current.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Will, C. M. Theory and Experiment in Gravitational Physics (Cambridge University Press, 1981).

    Google Scholar 

  2. Hughes, V. W., Robinson, H. G. & Beltran-Lopez, V. Phys. Rev. Lett. 4, 342–344 (1960).

    Article  ADS  Google Scholar 

  3. Drever, R. W. P. Phil. Mag. 6, 683–687 (1961).

    Article  ADS  Google Scholar 

  4. Cocconi, G. & Salpeter, E. Nuovo Cimento 10, 647–651 (1958).

    Article  Google Scholar 

  5. Dicke, R. H. The Theoretical Significance of Experimental Relativity (Blackie and Son, London, 1964).

    MATH  Google Scholar 

  6. Hari Dass, N. D. Phys. Rev. Lett. 36, 393–395 (1976).

    Article  ADS  Google Scholar 

  7. Golub, R. Inst Phys. Conf. Ser. 42, 104–106 (1978).

    CAS  Google Scholar 

  8. Velyukhov, G. E. JETP Lett. 8, 229–231 (1968).

    ADS  Google Scholar 

  9. Arlen Young, B. Phys. Rev. Lett. 22, 1445–1446 (1969).

    Article  ADS  Google Scholar 

  10. Williams, E. R. & Olsen, P. T. Phys. Rev. Lett. 42, 1575–1579 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Vigoureux, P. NPL Rep. DES–44 (National Physical Laboratory, Teddington, 1978).

  12. Weichuan, C., Ruimin, L. & Pingi, S. IEEE Trans. Inst. Meas. IM– 29, 238–242 (1980)

    Article  Google Scholar 

  13. Cohen-Tannoudji, C., DuPont–Roc, J., Haroche, S. & Laloe, F. Phys. Rev. Lett. 22, 758–760 (1969).

    Article  ADS  CAS  Google Scholar 

  14. Gallop, J. C. & Radcliffe, W. R. J. Phys. D11, L203–205 (1979).

    Google Scholar 

  15. Gallop, J. C. & Radcliffe, W. R. J. Phys. E14, 461–463 (1981).

    ADS  Google Scholar 

  16. Peebles, P. J. E. Ann. Phys. 20, 240–260 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  17. Karwacki, F. A. Navigation 27, 72–78 (1980).

    Article  Google Scholar 

  18. Petley, B. W. in Precision Measurement and Fundamental Constants (eds Cutler, P. & Lucas, A.) (NATO–ASI Series, Plenum, New York, in the press).

  19. Cohen, E. R. & Tayor, B. N. J. Phys. Chem. Ref. Data 2, 663–744 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Potts, S. P. & Preston, J. J. navig. Sci. 6, (1980).

  21. Raine, D. J. Rep. Prog. Phys. 14, 1152–1195 (1981).

    MathSciNet  Google Scholar 

  22. Canuto, V. M. & Goldman, I. Nature 296, 709–712 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallop, J., Petley, B. Gravitational anisotropies of gyromagnetic ratios and tests of general relativity. Nature 303, 53–54 (1983). https://doi.org/10.1038/303053a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303053a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing