Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological applications of picosecond spectroscopy

Abstract

Technological advances in picosecond spectroscopy have permitted the mechanisms of various chemical, physical and biological processes to be elucidated and understood to a greater degree than ever before. By means of picosecond emission, absorption and Raman spectroscopy, one can probe and measure directly the transient intermediates and kinetics of primary events in complex biological processes. A description of two current types of laser systems—solid-state and synchronously pumped dye lasers—and their application to determining the primary events in the biological processes of dissociation of oxy- and carboxymyoglobin, excited-state relaxation of porphyrins and visual transduction, illustrate the power of picosecond spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rentzepis, P. M. Science 202, 174–182 (1978).

    ADS  CAS  PubMed  Google Scholar 

  2. Reynolds, A. H. & Rentzepis, P. M. Adv. bot. Res. 8, 1–23 (1980).

    CAS  Google Scholar 

  3. Ippen, E. P. & Shank, C. V. in Ultrashort Light Pulses (ed. Shapiro, S. L.) (Springer, Heidelberg, 1977).

    Google Scholar 

  4. Shapiro, S. L., Cavanaugh, R. R. & Stephenson, J. C. Opt. Lett. 6, 470–474 (1981).

    ADS  CAS  PubMed  Google Scholar 

  5. Eastwood, D. & Gouterman, M. J. molec. Spectrosc. 30, 437–458 (1969).

    ADS  CAS  Google Scholar 

  6. Tsvirko, M. P., Stelmakh, G. F., Pyatosin, V. E., Solovyov, K. N. & Kachura, T. F. Chem. Phys. Lett. 73, 80–83 (1980).

    ADS  Google Scholar 

  7. Magde, D., Windsor, M. W., Holten, D. & Gouterman, M. Chem. Phys. Lett. 29, 182–187 (1974).

    ADS  Google Scholar 

  8. Gouterman, M., Mathies, R. A., Smith, B. E. & Caughey, W. S. J. chem. Phys. 52, 3795–3802 (1979).

    ADS  Google Scholar 

  9. Smith, B. E. & Gouterman, M. Chem. Phys. Lett. 2, 517–519 (1968).

    ADS  CAS  Google Scholar 

  10. Becker, R. S. & Kasha, M. J. Am. chem. Soc. 77, 3669–3770 (1955).

    CAS  Google Scholar 

  11. Treibs, A., Ann. N.Y. Acad. Sci. 206, 97–115 (1973).

    ADS  CAS  PubMed  Google Scholar 

  12. Gouterman, M., Ann. N.Y. Acad. Sci. 206, 70–83 (1973).

    ADS  CAS  PubMed  Google Scholar 

  13. Ake, R. L. & Gouterman, M. Theor. chim. Acta. 15, 20–42 (1969).

    CAS  Google Scholar 

  14. Gouterman, M., Schwarz, F. P., Smith, P. D. & Dolphin, D. J. chem. Phys. 59, 676–690 (1973).

    ADS  CAS  Google Scholar 

  15. Corwin, A. H., Chivvis, A. B., Poor, R. W., Whitten, D. G. & Baker, E. W. J. Am. chem. Soc. 90, 6577–6583 (1968).

    CAS  Google Scholar 

  16. Kobayashi, T., Huppert, D., Straub, K. D. & Rentzepis, P. M. J. chem. Phys. 70, 1720–1726 (1979).

    ADS  CAS  Google Scholar 

  17. Kobayashi, T., Straub, K. D. & Rentzepis, P. M. Photochem. Photobiol. 29, 925–931 (1979).

    CAS  Google Scholar 

  18. Straub, K. D., Huppert, D. & Rentzepis, P. M. J. Photochem. 17, 128–129 (1981).

    Google Scholar 

  19. Bergkamp, M. A., Dalton, J. & Netzel, T.L. J. Am. chem. Soc. 104, 253–259 (1982).

    CAS  Google Scholar 

  20. Ake, R. L. & Gouterman, M. Theor. chim. Acta 17, 408–416 (1970).

    CAS  Google Scholar 

  21. Adamczyk, A. & Wilkinson, F. JCS Faraday II 68, 2031–2041 (1972).

    CAS  Google Scholar 

  22. Reynolds, A. H., Milton, S. V., Straub, K. D. & Rentzepis, P. M. Biophys. J. (Submitted).

  23. Antonini, E. & Brunori, M. Front. Biol. 21, 1–445 (1971).

    Google Scholar 

  24. Noe, L. J., Eisert, W. G. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 75, 573–577 (1978).

    ADS  CAS  Google Scholar 

  25. Reynolds, A. H., Rand, S. D. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 78, 2292–2296 (1981).

    ADS  CAS  Google Scholar 

  26. Huppert, D., Straub, K. D. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 74, 4139–4143 (1977).

    ADS  CAS  Google Scholar 

  27. Bücher, T. & Kaspers, J. Biochim. biophys. Acta 1, 21–34 (1947).

    Google Scholar 

  28. Gibson, Q. H. & Ainsworth, S. Nature 180, 1416–1417 (1957).

    ADS  CAS  PubMed  Google Scholar 

  29. Ottolenghi, M. Adv. Photochem. 12, 97–200 (1980).

    CAS  Google Scholar 

  30. Yoshizawa, T. & Kito, Y. Nature 182, 1604–1605 (1958).

    ADS  CAS  PubMed  Google Scholar 

  31. Grellman, K. H., Livingston, R. & Pratt, D. Nature 193, 1258–1260 (1962).

    ADS  CAS  Google Scholar 

  32. Yoshizawa, T. & Wald, G. Nature 197, 1279–1286 (1963).

    ADS  CAS  PubMed  Google Scholar 

  33. Busch, G. E., Applebury, M. L., Lamola, A. A. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 69, 2802–2806 (1972).

    ADS  CAS  Google Scholar 

  34. Peters, K., Applebury, M. L. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 74, 3119–3123 (1977).

    ADS  CAS  Google Scholar 

  35. Wald, G. Nature 219, 800–807 (1968).

    ADS  CAS  PubMed  Google Scholar 

  36. Rosenfeld, T., Honig, B., Ottolenghi, M., Hurley, J. & Ebrey, T. G. Pure appl. Chem. 49, 341–351 (1977).

    CAS  Google Scholar 

  37. Warshel, A. Nature 260, 679–683 (1976).

    ADS  CAS  PubMed  Google Scholar 

  38. Mathies, R., Oseroff, A. R. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 73, 1–5 (1976).

    ADS  CAS  Google Scholar 

  39. Green, B. H., Monger, T. G., Alfano, R. R., Aton, B. & Callender, R. H. Nature 269, 179–180 (1977).

    ADS  CAS  PubMed  Google Scholar 

  40. Monger, T. G., Alfano, R. R. & Callender, R. H. Biophys. J. 27, 105–115 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Birge, R. R. & Hubbard, L. M. J. Am. chem. Soc. 102, 2195–2205 (1980).

    CAS  Google Scholar 

  42. Spalink, J. D., Reynolds, A. H., Rentzepis, P. M., Applebury, M. L. & Sperling, W. Proc. natn. Acad. Sci. U.S.A. (in the press).

  43. Braiman, M. & Mathies, R. Proc. natn. Acad. U.S.A. 79, 403–407 (1982).

    ADS  CAS  Google Scholar 

  44. Rothschild, K. J. & Marrero, H. Proc. natn. Acad. Sci. U.S.A. 79, 4045–4049 (1982).

    ADS  CAS  Google Scholar 

  45. Favrot, J., Leclerq, J. M., Roberge, R., Sandorfy, C. & Vocelle, D. Chem. Phys. Lett. 53, 433–438 (1978).

    ADS  CAS  Google Scholar 

  46. Favrot, J., Sandorfy, C. & Vocelle, D. Photochem. Photobiol. 28, 271–272 (1978).

    CAS  Google Scholar 

  47. Rentzepis, P. M. Chem. Phys. Lett. 2, 117–120 (1968).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilinski, E., Rentzepis, P. Biological applications of picosecond spectroscopy. Nature 302, 481–487 (1983). https://doi.org/10.1038/302481a0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302481a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing