Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila mutants reveal two components of fast outward current

Abstract

The gating of potassium ion channels has been shown to be dependent on voltage1 or Ca2+ ions2,3 or both4,5. A fast transient potassium current (sometimes denoted IA) is found in a wide variety of animals6–14. The Ca2+-sensitivity of this early outward current has been a matter of dispute as reports from different systems have indicated complete insensitivity6–8, marked sensitivity10–12 or only partial sensitivity13,14. It is possible that there are two distinct early outward current systems, one Ca2+-sensitive and the other not. Thus, the reports of partial Ca2+-sensitivity would indicate the presence of both systems in the membrane. I now report that in the adult Drosophila flight muscles, the transient outward current is also partially Ca2+-sensitive. The hypothesis that two separate currents are present is strengthened by the discovery that in several mutants of the X-linked Shaker locus (ShKS133, Sh102 and ShK0120; refs15–17) the Ca2+-independent component (IAci) is absent with only the Ca2+-dependent component (IAcd) remaining. Hence, the mutations seem to delete one of two separate current systems. An alternative hypothesis is that only one channel type is present that can be modified by mutation to be totally Ca2+-dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 116, 449–472 (1952).

    Article  CAS  Google Scholar 

  2. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–8 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Gorman, A. L. F. & Hermann, A. J. Physiol., Lond. 296, 393–410 (1979).

    Article  CAS  Google Scholar 

  4. Adams, P. R., Constanti, A., Brown, D. A. & Clark, R. B. Nature 296, 746–749 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Barrett, J. N., Magleby, K. L. & Pallotta, B. S. J. Physiol., Lond. 331, 211–230 (1982).

    Article  CAS  Google Scholar 

  6. Hagiwara, S. & Saito, N. J. Physiol., Lond. 148, 161–171 (1959).

    Article  CAS  Google Scholar 

  7. Connor, J. A. & Stevens, C. F. J. Physiol., Lond. 213, 21–30 (1971).

    Article  CAS  Google Scholar 

  8. Neher, E. J. gen. Physiol. 58, 36–53 (1971).

    Article  CAS  Google Scholar 

  9. Barrett, J. N. & Crill, W. E. Fedn Proc. 31, 305 (1972).

    Google Scholar 

  10. Siegelbum, S. A. & Tsien, R. W. J. Physiol., Lond. 299, 485–506 (1980).

    Article  Google Scholar 

  11. Miledi, R. Proc. R. Soc. B215, 491–497 (1982).

    ADS  CAS  Google Scholar 

  12. Mounier, Y. & Vassort, G. J. Physiol., Lond. 251, 609–625 (1975).

    Article  CAS  Google Scholar 

  13. Coraboeuf, E. & Carmeliet, E. Pflügers Arch. ges. Physiol, 392, 352–359 (1982).

    Article  CAS  Google Scholar 

  14. MacDermott, A. B. & Weight, F. F. Nature 300, 185–188 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Jan, Y. N., Jan, L. Y. & Dennis, M. J. Proc. R. Soc. B198, 87–108 (1977).

    ADS  CAS  Google Scholar 

  16. Tanouye, M. A., Ferrus, A. & Fujita, S. C. Proc. natn. Acad. Sci. U.S.A. 78, 6548–6552 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Salkoff, L. & Wyman, R. Nature 293, 228–230 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Salkoff, L. & Wyman, R. Science 212, 461–463 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Salkoff, L. & Wyman, R. J. Physiol., Lond. (in the press).

  20. Brehm, P. & Eckert, R. Science 202, 1203–1206 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Eckert, R., Tillotson, D. L. & Brehm, P. Fedn Proc. 40, 2226–2232 (1981).

    CAS  Google Scholar 

  22. Ashcroft, F. M. & Stanfield, P. R. J. Physiol., Lond. 323, 93–115 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salkoff, L. Drosophila mutants reveal two components of fast outward current. Nature 302, 249–251 (1983). https://doi.org/10.1038/302249a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302249a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing