Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes

Abstract

ADP–ribosyl transferase (ADPRT) is a DNA-dependent nuclear enzyme which covalently attaches ADP–ribose moieties derived from NAD to proteins to form mono- or poly-ADP–ribosyl derivatives1,2. ADPRT activity is strongly stimulated by breaks in DNA3,4 and the enzyme is required for efficient DNA repair5–7. Several reports have suggested that the metabolism of poly- or mono-(ADP–ribose) might also be involved in differentiation in various eukaryotes1,2,8–12. In the most convincing of these, inhibitors of ADPRT were shown to block the differentiation of chick myoblasts in vitro11,12, and differentiation was accompanied by the appearance of single-strand breaks in DNA. We present here evidence that ADPRT activity is obligatory early in the mitogen-induced activation of human peripheral blood lymphocytes. The requirement for this enzyme coincides with a rapid (1–8 h) rejoining of single-strand breaks present in the DNA of quiescent lymphocytes. Hence, DNA breaking and rejoining, regulated by ADPRT, may be involved in a general mechanism of differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hayaishi, O. & Ueda, K. A. Rev. Biochem. 46, 95–116 (1977).

    Article  CAS  Google Scholar 

  2. Purnell, M. R., Stone, P. R. & Whish, W. J. D. Biochem. Soc. Trans. 8, 215–227 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Halldorsson, H., Gray, D. A. & Shall, S. FEBS Lett. 85, 349–352 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Benjamin, R. & Gill, M. J. biol. Chem. 255, 10493–10508 (1980).

    CAS  PubMed  Google Scholar 

  5. Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. Nature 283, 593–596 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Gray, D. A., Durkacz, B. W. & Shall, S. FEBS Lett. 131, 173–177 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Creissen, D. & Shall, S. Nature 296, 271–272 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Caplan, A. I. & Rosenberg, M. J. Proc. natn. Acad. Sci. U.S.A. 72, 1852–1857 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Rastl, E. & Swetly, P. J. biol. Chem. 253, 4333–4340 (1978).

    CAS  PubMed  Google Scholar 

  10. Bredehorst, R., Klapproth, K. & Hilz, H. Cell Differentiation 9, 95–103 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Farzaneh, F., Shall, S. & Zalin, R. in Novel ADP-Ribosylations of Regulatory Enzymes and Proteins (eds Smulson, M. & Sugimura, T.) 217–225 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  12. Farzeneh, F., Shall, S., Brill, D. & Zahlin, R. Nature 300, 362–366 (1982).

    Article  ADS  Google Scholar 

  13. Ling, N. R. & Kay, J. E. Lymphocyte Stimulation 2nd edn (North-Holland, Amsterdam, 1975).

    Google Scholar 

  14. Wedner, H. J. & Parker, C. W. Prog. Allergy 20, 195–300 (1976).

    CAS  PubMed  Google Scholar 

  15. Crumpton, M. J., Perles, B. & Auger, J. in International Cell Biology (eds Brinkley, B. R. & Porter, K. R.) 119–127 (Rockefeller University Press, New York, 1977).

    Google Scholar 

  16. Shall, S. J. Biochem., Tokyo 77, 2p (1975).

    Article  CAS  Google Scholar 

  17. Purnell, M. R. & Whish, W. J. D. Biochem. J. 185, 775–777 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark, J. B., Ferris, G. M. & Pinder, S. Biochim. biophys. Acta 238, 82–85 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. Cook, P. R. & Brazell, I. A. J. cell. Sci. 22, 287–302 (1976).

    CAS  PubMed  Google Scholar 

  20. Cook, P. R., Brazell, I. A. & Jost, E. J. cell. Sci. 22, 303–324 (1976).

    CAS  PubMed  Google Scholar 

  21. Durkacz, B. W., Irwin, J. & Shall, S. Eur. J. Biochem. 121, 65–69 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Cook, P. R. & Brazell, I. A. Nature 263, 679–682 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Vitti, P., De Wolf, M. J. S., Acquaviva, A. M., Epstein, M. & Kohn, L. D. Proc. natn. Acad. Sci. U. S. A. 79, 1525–1529 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Calabretta, B., Robberson, D. L., Barrera-Saldana, H. A., Lambrou, T. P. & Saunders, G. F. Nature 296, 219–225 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Weisbrod, S. Nature 297, 289–295 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Cook, P. R. Nature 245, 23–25 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. MacDermott, A. New Scient. 95, 228–231 (1982).

    CAS  Google Scholar 

  28. Johnstone, A. P., DuBois, J. H. & Crumpton, M. J. Biochem. J. 194, 309–318 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnstone, A., Williams, G. Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes. Nature 300, 368–370 (1982). https://doi.org/10.1038/300368a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300368a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing