Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic and geochemical studies of nodules in kimberlite have implications for the lower continental crust

Abstract

Lower crustal xenoliths from the Calcutteroo kimberlitic pipes in South Australia show a surprisingly diverse range in Nd and Sr isotopic compositions and rare earth element (REE) abundances. Mafic granulite and garnet–clinopyroxenite xenoliths have measured εNd(0) values between +6.1 and −7.9, both light (L)REE enrichments and depletions, low Rb/Sr ratios (0.005–0.040) and relatively high 87Sr/86Sr ratios of from 0.70675 to 0.70919. A felsic xenolith has compositions more typical of upper crustal rocks with εNd(0) = −21.4, LREE enrichments, Rb/Sr = 1.47 and 87Sr/86Sr = 0.85987. An approximate correlation also exists between Sm/Nd versus 143Nd/144Nd and Rb/Sr versus 87Sr/86Sr indicating major intracrustal differentiation in the lower crust at 2,400 Myr. This produced extremely low Rb/Sr ratios, and both relative LREE enrichments (low Sm/Nd) and depletions (high Sm/Nd). If these results are typical, then they indicate that the lower crust has higher 87Sr/86Sr and more positive εNd(0) values than previous estimates1–5. This may require revision of total crustal compositions and crust–mantle evolutionary models1–5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacobsen, S. B. & Wasserburg, G. J. J. geophys. Res. 84, 7411–7427 (1979).

    Article  ADS  CAS  Google Scholar 

  2. DePaolo, D. J. Geochim. cosmochim. Acta 44, 1185–1196 (1980).

    Article  ADS  CAS  Google Scholar 

  3. O'Nions, R. K. & Hamilton, P. J. Phil. Trans. R. Soc. A301, 473–487 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Allègre, C. J. Tectonophysics 81, 109–132 (1982).

    Article  ADS  Google Scholar 

  5. Weaver, B. L. & Tarney, J. Nature 286, 342–346 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Colchester, D. M. J. geol. Soc. Aust. 19, 383–386 (1972).

    Article  CAS  Google Scholar 

  7. Stracke, K. J., Ferguson, J. & Black, L. P. in Proc. 2nd int. Kimberlite Conf. 1, 71–91 (1979).

    CAS  Google Scholar 

  8. Ferguson, J., Arculus, R. J. & Joyce, J. BMR J. Aust. Geol. Geophys. 4, 227–241 (1979).

    CAS  Google Scholar 

  9. Perkins, D. III & Newton, R. C. Nature 292, 144–146 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Goldsmith, J. R. Am. Miner. 65, 272–284 (1980).

    CAS  Google Scholar 

  11. Ellis, D. J. & Green, D. H. Contr. Miner. Petrol. 71, 13–22 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Ganguly, J. Geochim. cosmochim. Acta 43, 1021–1029 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Branson, J. C., Moss, F. J. & Taylor, F. J. Bur. Min. Res. Austr. Rep. 183 (1976).

  14. Taylor, S. R. & McLennan, S. M. Phil. Trans. R. Soc. A301, 381–399 (1981).

    Article  ADS  CAS  Google Scholar 

  15. DePaolo, D. J. EOS 62, 137–140 (1981).

    Article  ADS  Google Scholar 

  16. McCulloch, M. T. & Compston, W. Nature 294, 322–327 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Taylor, S. R. A. Geophys. Un. Ewing Ser. 1, 325–335 (1977).

    Article  CAS  Google Scholar 

  18. DePaolo, D. J. & Wasserburg, G. J. Geochim. cosmochim. Acta 43, 615–627 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Green, T. H., Brunfelt, A. O. & Heier, K. S. Geochim. cosmochim. Acta 36, 241–257 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Muecke, G. K., Pride, C. & Sarkar, P. Phys. Chem. Earth 11, 449–464 (1979).

    Article  Google Scholar 

  21. Tarney, J., Weaver, B. L. & Drury, S. A. in Trondhjemites, Dacites and Related Rocks (ed. Barker, F.) 275–299 (Elsevier, Amsterdam, 1979).

    Book  Google Scholar 

  22. Arculus, R. J. & Smith, D. in Proc. 2nd int. Kimberlite Conf. 2, 309–317 (1979).

    Google Scholar 

  23. McGetchin, T. R. & Silver, L. T. J. geophys. Res. 77, 7022–7037 (1972).

    Article  ADS  Google Scholar 

  24. Taylor, S. R. & Gorton, M. P. Geochim. cosmochim. Acta 41, 1375–1380 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Rogers, N. W. Nature 270, 681–684 (1977).

    Article  ADS  CAS  Google Scholar 

  26. McCulloch, M. T. & Chappell, B. W. Earth planet. Sci. Lett. 58, 51–64 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCulloch, M., Arculus, R., Chappell, B. et al. Isotopic and geochemical studies of nodules in kimberlite have implications for the lower continental crust. Nature 300, 166–169 (1982). https://doi.org/10.1038/300166a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300166a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing