Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anti-ovalbumin monoclonal antibodies interact with their antigen in internal membranes of Xenopus oocytes

Abstract

The microinjection of selected antibodies into the cytosol or nucleus of living cells is proving a useful technique for investigating the function of intracellular proteins1–5. The rationale underlying this approach is that, in binding to its antigenic determinant, the antibody may mask or disrupt the activity mediated by the region of the protein near the determinant. This technique, however, cannot be used to identify functions related to antigenic determinants of proteins within the lumen of the endoplasmic reticulum (ER), or Golgi compartments, since both regions are inaccessible to direct microinjection and since the movement of proteins into these areas from the cytosol occurs during but not after their translation6. In theory, this constraint could be overcome if the mRNAs specifying the antibody were injected into the cell containing the target antigenic determinant. After the vectorial and co-translational transfer of its constituent chains through the membrane, the antibody would then be assembled within the lumen of the ER thereby being in a position to bind to its antigenic determinants. We demonstrate here a successful example of such an approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Antman, K. H. & Livingston, D. M. Cell 19, 627–635 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Bona, M., Scheer, U. & Bautz, E. K. F. J. molec. Biol. 151, 81–99 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Lin, J. & Feramisco, J. R. J. Cell Biol. 87, 181a (1980).

    Google Scholar 

  4. Rungger, D., Rungger-Brandle, E., Chaponnier, C. & Gabbaini, G. Nature 282, 320–321 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wehland, J., Willingham, M., Dickson, R. & Pastan, I. Cell 25, 105–119 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Sabatini, D. D., Kreibichg Mortimoto, T. & Adesnik, M. J. Cell Biol. 92, 1–22 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Colman, A. & Morser, J. Cell 17, 517–526 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Lane, C. et al. Eur. J. Biochem. 111, 225–235 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Valle, G., Besley, J. & Colman, A. Nature 291, 338–340 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Roth, R. A. & Koshland, M. E. Biochemistry 20, 6594–6599 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Colman, A. et al. Eur. J. Biochem. 113, 339–348 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Cutler, D., Lane, C. & Colman, A. J. molec. Biol. 153, 917–931 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Kohler, G. & Milstein, C. Nature 256, 495–497 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Williams, A. F., Galfré, G. & Milstein, C. Cell 12, 663–673 (1974).

    Article  Google Scholar 

  15. McKearn, T. J. in Monoclonal Antibodies (eds Kennet, R. H., McKearn, T. J. & Bechtol, K. B.) 374 (Plenum, New York, 1980).

    Google Scholar 

  16. Mous, J., Peeters, B. & Rombauts, W. FEBS Lett. 122, 105–108 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Colman, A., Besley, J. & Valle, G. J. molec. Biol. (in the press).

  18. Tartakoff, A. & Vassalli, P. J. Cell Biol. 79, 694–707 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. Tartakoff, A. & Vassalli, P. J. Cell Biol. 83, 284–299 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Somlyo, A. P., Garfield, R., Chacko, S. & Somlyo, A. V. J. Cell Biol. 66, 425–443 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Ehrlich, P. H., Moyle, W., Moustafa, Z. A. & Canfield, R. E. J. Immun. 128, 2709–2713 (1982).

    CAS  PubMed  Google Scholar 

  22. Cotton, R. G. H., Secher, D. S. & Milstein, C. Eur. J. Immun. 3, 135–140 (1973).

    Article  CAS  Google Scholar 

  23. Palmiter, R. D. J. biol. Chem. 248, 2095–2106 (1973).

    CAS  PubMed  Google Scholar 

  24. Bonner, W. & Laskey, R. Eur. J. Biochem. 46, 83–88 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valle, G., Jones, E. & Colman, A. Anti-ovalbumin monoclonal antibodies interact with their antigen in internal membranes of Xenopus oocytes. Nature 300, 71–74 (1982). https://doi.org/10.1038/300071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300071a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing