Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

T4 late transcripts are initiated near a conserved DNA sequence

Abstract

Bacteriophage T4 late transcription is unusual, among prokaryotes, in its complexity. Late transcription requires the host RNA polymerase, the products of T4 genes 33, 45 and 55, and other small polypeptides, the genes of which have not been identified1. In addition the DNA template must be ‘competent’ for late transcription. First the DNA must contain the substituted base 5-hydroxymethyl cytosine in place of cytosine (this requirement is eliminated by a mutation in the T4 alc gene)1,2. Second, the DNA must be replicating, although late transcription can be uncoupled from DNA replication by mutations in the T4 genes coding for DNA ligase (gene 30) and DNA exonuclease (gene 46)1,3. We report here the location of the initiation sites of the messenger RNAs (mRNAs) synthesized in vivo from four late genes (genes 21, 22, 23 and 36) by S1 nuclease mapping and we have determined the DNA sequences at these sites. We have found strong homology to the sequence TATAAATAC-TATT immediately upstream from the 5′ ends of the late messages and we suggest that this sequence is specifically recognized by the complex responsible for late transcription. Also, we have examined gene 23 mRNA synthesized in the absence of DNA replication using the 30 46 mutant described above and find that it is identical to the true late transcript synthesized in normal infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rabussay, D. & Geiduschek, E. P. in Comprehensive Virology Vol. 8 (eds Fraenkel-Conrat, H. & Wagner, R. R.) 1–196 (Plenum, New York, 1977).

    Google Scholar 

  2. Snyder, L., Gold, L. & Kutter, E. M. Proc. natn. Acad. Sci. USA 69, 603–607 (1972).

    Article  ADS  Google Scholar 

  3. Wu, R., Geiduschek, E. P. & Cascino, A. J. molec. Biol. 96, 539–562 (1975).

    Article  CAS  Google Scholar 

  4. Young, E. T., Menard, R. C. & Harada, J. J. Virol. 40, 790–799 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kassavetis, G. A. & Geiduschek, E. P. EMBO J. 1, 107–114 (1982).

    Article  CAS  Google Scholar 

  6. Parker, M., Christensen, A. C., Young, E. T. & Doermann, A. H. (in preparation).

  7. King, J. & Laemmli, U.K. J. molec. Biol. 62, 465–477 (1971).

    Article  CAS  Google Scholar 

  8. Oliver, D. B. & Crowther, R. A. J. molec. Biol. 153, 545–568 (1981).

    Article  CAS  Google Scholar 

  9. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  10. Nasmyth, K. A., Tatchell, K., Hall, B. D., Astell, C. & Smith, M. Cold Spring Harb. Symp. quant. Biol. 45, 961–981 (1980).

    Article  Google Scholar 

  11. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  12. Sollner-Webb, B. & Reeder, R. H. Cell 18, 485–499 (1979).

    Article  CAS  Google Scholar 

  13. Emrich-Owen, J., Schultz, D. W., Taylor, A. & Smith, G. R. J. molec. Biol. (submitted).

  14. Lewis, M. K. & Burgess, R. R. J. biol. Chem. 255, 4928–4936 (1980).

    CAS  PubMed  Google Scholar 

  15. Pribnow, D. in Biological Regulation and Development Vol. 1 (ed. Goldberger, R. F.) 219–278 (Plenum, New York, 1979).

    Book  Google Scholar 

  16. Rosenburg, M. & Court, D. A. Rev. Genet. 13, 319–353 (1979).

    Article  Google Scholar 

  17. Siebenlist, U., Simpson, R. B. & Gilbert, W. Cell 20, 269–281 (1981).

    Article  Google Scholar 

  18. Rosa, M. D. Cell 16, 815–825 (1979).

    Article  CAS  Google Scholar 

  19. Lee, G. & Pero, J. J. molec. Biol. 152, 247–265 (1981).

    Article  CAS  Google Scholar 

  20. Grosveld, G. C., deBoer, E., Shewmaker, C. K. & Flavell, R. A. Nature 295, 120–126 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Mattson, T., Van Houwe, G., Bolle, A., Selzer, G. & Epstein, R. Molec. gen. Genet. 154, 319–326 (1977).

    Article  CAS  Google Scholar 

  22. Young, E. T. et al. J. molec. Biol. 183, 423–445 (1980).

    Article  Google Scholar 

  23. Völcker, T. A. & Showe, M. K. Molec. gen. Genet. 177, 447–452 (1980).

    Article  Google Scholar 

  24. Showe, M. K., Isobe, E. & Onorato, L. J. molec. Biol. 107, 35–54 (1976).

    Article  CAS  Google Scholar 

  25. Hagen, F. & Young, E. T. J. Virol. 26, 793–804 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Krisch, H. et al. Proc. natn. Acad. Sci. USA (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, A., Young, E. T4 late transcripts are initiated near a conserved DNA sequence. Nature 299, 369–371 (1982). https://doi.org/10.1038/299369a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299369a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing