Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abnormal NAD+ levels in cells from patients with Fanconi's anaemia

Abstract

Poly(ADP-ribose) is synthesized from NAD+ in the nuclei of eukaryotic cells and the activity of the chromatin-bound enzyme, poly(ADP-ribose) polymerase, is markedly stimulated by DNA strand breaks1–7. Recent studies suggest that poly(ADP-ribose) is associated with the repair of DNA damage8–10 and the process of cellular differentiation11,12. Hence, abnormalities in the metabolism of poly(ADP-ribose) could be aetiologically related to some of the human genetic disorders of DNA repair, especially those that are characterized by congenital and developmental anomalies. Defects in poly(ADP-ribose) metabolism could arise from abnormalities in the enzyme poly(ADP-ribose) polymerase, abnormalities in levels of its substrate NAD+, the proteins that act as acceptors for poly(ADP)-ribosylation or polymer stability. We have examined cells from patients with genetic disorders of DNA repair to determine whether they contain the enzyme poly(ADP-ribose) polymerase, whether the enzyme increases its activity in response to DNA damage and whether the cells maintain normal levels of NAD+. We demonstrate here that cells from patients having Fanconi's anaemia have lower NAD+ levels than cells from normal donors. This abnormality may contribute to the disorders of DNA repair and congenital anomalies that characterize this disease13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hayaishi, O. & Ueda, K. A. Rev. Biochem. 46, 95–116 (1977).

    Article  CAS  Google Scholar 

  2. Hilz, H. & Stone, P. Rev. Physiol. Biochem. Pharmac. 76, 1–57 (1976).

    Article  CAS  Google Scholar 

  3. Purnell, M. R., Stone, P. R. & Whish, W. J. D. Biochem. Soc. Trans. 8, 215–227 (1980).

    Article  CAS  Google Scholar 

  4. Mullins, D. W., Giri, C. P. & Smulson, M. Biochemistry 16, 506–513 (1977).

    Article  CAS  Google Scholar 

  5. Miller, E. G. Biochim. biophys. Acta 395, 191–200 (1975).

    Article  CAS  Google Scholar 

  6. Benjamin, R. C. & Gill, D. M. J. biol. Chem. 255, 10493–10501 (1980).

    CAS  PubMed  Google Scholar 

  7. Cohen, J. J. & Berger, N. A. Biochem. biophys. Res. Commun. 98, 268–274 (1981).

    Article  CAS  Google Scholar 

  8. Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. Nature 283, 593–596 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Jacobson, E. L., Juarez, D. & Sims, J. L. Fedn Proc. 39, 1739 (1980).

    Google Scholar 

  10. Berger, N. A. & Sikorski, G. W. Biochemistry 20, 3610–3614 (1981).

    Article  CAS  Google Scholar 

  11. Caplan, A. I. & Ordahl, C. P. Science 201, 120–130 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Farzaneh, F., Shall, S. & Zalin, R. in ADP-Ribosylations of Regulatory Enzymes and Proteins (eds Smulson, M. E. & Sugimura, T.) 217–224 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  13. German, J. Med. Genet. 8, 61–101 (1972).

    CAS  Google Scholar 

  14. Poon, P. K., O'Brien, R. L. & Parker, J. W. Nature 250, 223–225 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Blomquist, C. H., Larson, K. E. & Taddeini, L. Expl Cell Res. 100, 447–450 (1976).

    Article  CAS  Google Scholar 

  16. Berger, N. A., Berger, S. J., Sikorski, G. W. & Catino, D. M. Expl Cell Res. 137, 79–88 (1982).

    Article  CAS  Google Scholar 

  17. Berger, N. A., Sikorski, G. W., Petzold, S. J. & Kurohara, K. K. J. clin. Invest. 63, 1164–1171 (1979).

    Article  CAS  Google Scholar 

  18. Skidmore, C. J. et al. Eur. J. Biochem. 101, 135–142 (1979).

    Article  CAS  Google Scholar 

  19. Juarez-Salinas, H., Sims, J. L. & Jacobson, M. K. Nature 282, 740–741 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Sims, J. L., Berger, S. J. & Berger, N. A. J. supramolec. Struct. 16, 281–288 (1981).

    CAS  Google Scholar 

  21. Sims, J. L., Sikorski, G. W., Catino, D. M., Berger, S. J. & Berger, N. A. Biochemistry 21, 813–821 (1982).

    Article  Google Scholar 

  22. Caplan, A. I. Devl Biol. 28, 71–83 (1972).

    Article  CAS  Google Scholar 

  23. Rastl, E. & Swetly, P. J. biol. Chem. 253, 4333–4340 (1978).

    CAS  PubMed  Google Scholar 

  24. Kato, T., Berger, S. J., Carter, J. A. & Lowry, O. H. Analyt. Biochem. 53, 86–97 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, N., Berger, S. & Catino, D. Abnormal NAD+ levels in cells from patients with Fanconi's anaemia. Nature 299, 271–273 (1982). https://doi.org/10.1038/299271a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299271a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing