Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA precursors in chemical mutagenesis: a novel application of DNA sequencing

Abstract

Recently, we have shown that deoxyribonucleoside residues in the cellular DNA precursor pool are generally more susceptible to methylation than are residues within the DNA duplex1. The N-1 position of adenosine, for example, was found to be at least 13,000 times more susceptible to methylation by N-methyl-N-nitrosourea (MNU) than the same site in the DNA. These results suggest that potential sites for alkylation in the double-strand duplex are relatively inaccessible to direct alkylation in vivo. Many of these sites are probably protected from alkylation not only by their position in the interstices of the DNA helix2,3, but also by further in vivo ‘packaging’ of the DNA in chromatin4–8. We have now used DNA sequencing to demonstrate the incorporation properties of products of the reaction of MNU with dATP and of deoxy-N4-hydroxycytidine triphosphate during DNA replication in vitro by phage T4 DNA polymerase and the ‘Klenow’ fragment of Escherichia coli pol I. The results suggest that DNA precursor nucleotides due to their greater availability for alkylation, may offer routes for the introduction of alkylated residues into double-stranded DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Topal, M. D. & Baker, M. S. Proc. natn. Acad. Sci. U.S.A. 79, 2211–2215 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Shapiro, R., Braverman, B., Louis, J. B. & Servis, R. B. J. biol. Chem. 248, 4060–4064 (1973).

    CAS  PubMed  Google Scholar 

  3. Cramer, F. Prog. Nucleic Acid Res. molec. Biol. 11, 391–421 (1973).

    Article  Google Scholar 

  4. Kolchinsky, A. M., Mirzabekov, A. D., Gilbert, W. & Li, L. Nucleic Acids Res. 3, 11–18 (1976).

    Article  CAS  Google Scholar 

  5. Rajalakshmi, S., Rao, P. M. & Sarma, D. S. R. Biochemistry 17, 4515–4518 (1978).

    Article  CAS  Google Scholar 

  6. Moses, H. L., Webster, R. A., Martin, G. D. & Spelsberg, T. C. Cancer Res. 36, 2905–2910 (1976).

    CAS  PubMed  Google Scholar 

  7. Ramanathon, R., Rajalakshmi, S., Sarma, D. S. R. & Farber, E. Cancer Res. 36, 2073–2079 (1976).

    Google Scholar 

  8. Bailey, G. S., Nixon, J. E., Hendricks, J. D., Sinnhuber, R. O. & Van Holde, K. E. Biochemistry 19, 5836–5842 (1980).

    Article  CAS  Google Scholar 

  9. Sanger, F. & Coulson, A. R. J. J. molec. Biol. 94, 441–448 (1975).

    Article  CAS  Google Scholar 

  10. Kochetkov, N. K. & Budowsky, E. I. Prog. Nucleic. Acid. Res. molec. Biol. 9, 403–438 (1969).

    Article  CAS  Google Scholar 

  11. Muller, W., Weber, H., Meyer, F. & Weissman, C. J. molec. Biol. 124, 343–358 (1978).

    Article  CAS  Google Scholar 

  12. Topal, M. D., Hutchinson, C. A. III, Bayer, M. S. & Harris, C. ICN–UCLA Symp. molec. cell. Biol. 19, 725–734 (1980).

    Google Scholar 

  13. Kroger, M. & Singer, B. Biochemistry 18, 3493–3500 (1979).

    Article  CAS  Google Scholar 

  14. Tong, C., Fazio, M. & Williams, G. M. Proc. natn. Acad. Sci. U.S.A. 77, 7377–7379 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Grisham, J. W., Greenberg, D. S., Kaufman, D. G. & Smith, G. Proc. natn. Acad. Sci. U.S.A. 77, 4813–4817 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Cerda-Olmeda, E., Hanawalt, P. C. & Guerola, N. J. molec. Biol. 33, 705–719 (1968).

    Article  Google Scholar 

  17. Hince, T. A. & Neale, S. Mutat. Res. 24, 383–387 (1974).

    Article  CAS  Google Scholar 

  18. Sanger, F. et al. J. molec. Biol. 125, 225–246 (1978).

    Article  CAS  Google Scholar 

  19. Budowsky, E. J., Shibaeva, R. P., Sverdlov, E. D. & Monastyrskaya, G. S. Molec. Biol. USSR 2, 321–328 (1968).

    Google Scholar 

  20. Lautenberger, J. A. et al. Proc. natn. Acad. Sci. U.S.A. 75, 2271–2275 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Boeke, J. D., Vovis, G. F. & Zinder, N. D. Proc. natn. Acad. Sci. U.S.A. 76, 2699–2702 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topal, M., Hutchison, C. & Baker, M. DNA precursors in chemical mutagenesis: a novel application of DNA sequencing. Nature 298, 863–865 (1982). https://doi.org/10.1038/298863a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298863a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing