Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

G inversion in bacteriophage Mu: a novel way of gene splicing

Abstract

The G region of bacteriophage Mu is a 3,000-base pair (bp) invertible DNA segment that determines the host specificity of the phage1,2. Only phage with the G segment in the orientation designated (+) can adsorb to Escherichia coli K-12 (refs 3–5), whereas phage with the G segment in the (−) orientation infects other hosts such as Citrobacter freundii and E. coli C (ref. 1). It has been proposed that four genes are involved in host specificity—S, U, S′ and U′—of which S and U are expressed in the orientation (+) and S′ and U′ in the inverted orientation (−) of the G segment. We have presented two alternatives for the organization of these genes (Fig. 1). In model A the four genes involved are entirely contained within the G segment, whereas in the alternative model (B) it is assumed that the proximal part of the S gene is located in the a part of the Mu genome. We report here that the S and S′ genes are partially located outside the G segment and share a common part located in α (Sc). This common S region will be joined by G inversion to one of the two variable parts (Sv or Sv′) which results in the synthesis of either tail fibre protein S or S′.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Van de Putte, P., Cramer, S. & Giphart-Gassler, M. Nature 286, 218–222 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Howe, M. M. Cell 21, 605–606 (1980).

    Article  CAS  Google Scholar 

  3. Symonds, N. & Coelho, A. Nature 271, 573–574 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Bukhari, A. I. & Ambrosio, L. Nature 271, 575–577 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Kamp, D., Kahmann, R., Zipser, D., Broker, T. R. & Chow, L. T. Nature 271, 577–580 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Chow, L. T., Kahmann, R. & Kamp, D. J. molec. Biol. 113, 591–609 (1977).

    Article  CAS  Google Scholar 

  7. Auerswald, E. A., Ludwig, G. & Schaller, H. Cold Spring Harb. Symp. quant. Biol. 45, 107–113 (1981).

    Article  CAS  Google Scholar 

  8. Rothstein, S. J., Jorgensen, R. A., Postle, K. & Reznikoff, W. S. Cell 19, 795–805 (1980).

    Article  CAS  Google Scholar 

  9. Kwoh, D. Y. & Zipser, D. Virology 114, 291–296 (1981).

    Article  CAS  Google Scholar 

  10. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. & Tonegawa, S. Nature 286, 676–683 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Davis, M. M. et al. Nature 283, 733–739 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Howe, M. M., Schumm, J. W. & Taylor, A. L. Virology 92, 108–124 (1979).

    Article  CAS  Google Scholar 

  13. Giphart-Gassler, M., Wijffelman, C. & Reeve, J. J. molec. Biol. 145, 139–163 (1981).

    Article  CAS  Google Scholar 

  14. Schumann, W. & Bade, E. G. Molec. gen. Genet. 169, 97–105 (1979).

    Article  CAS  Google Scholar 

  15. Jorgensen, R. A., Rothstein, S. & Reznikoff, W. S. Molec. gen. Genet. 177, 65–72 (1979).

    Article  CAS  Google Scholar 

  16. O'Day, K., Schultz, D., Ericsen, W., Rawluk, L. & Howe, M. M. Virology 93, 320–328 (1979).

    Article  CAS  Google Scholar 

  17. Sancar, A., Williams, K. R., Chase, J. W. & Rupp, W. D. Proc. natn. Acad. Sci. U.S.A. 78, 4274–4278 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giphart-Gassler, M., Plasterk, R. & van de Putte, P. G inversion in bacteriophage Mu: a novel way of gene splicing. Nature 297, 339–342 (1982). https://doi.org/10.1038/297339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297339a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing