Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dimeric tetrapeptide enkephalins display extraordinary selectivity for the δ opiate receptor

Abstract

The μ and δ opiate receptors, postulated on the basis of pharmacological observations, have been well characterized in ligand-binding studies1–6. The several classes of opiate receptor appear to subserve different functions7–9. Although highly specific μ ligands are available, there has been a paucity of high-affinity ligands with δ specificity that could be used to investigate the functions, properties and spatial distribution of the δ receptor. Previous structure–activity studies of the enkephalins have suggested that a free carboxyl group at the C-terminus is an important determinant of δ selectivity9,10: amidation of Leu5 or Met5 results in a non-selective ligand. Recently, however, we have demonstrated that cross-linking enkephalin amides by a methylene bridge of suitable length produces a dimeric pentapeptide, with greater affinity and selectivity for the δ receptor than is found in the original δ ligand11,12. Evidence that this dimer may interact simultaneously with two δ, but not two μ receptors12 is consistent with independent demonstrations that the δ receptors are clustered in the membrane7,13. When the C-terminal amino acid of enkephalin is removed, the resulting tetrapeptide enkephalin amide H-Tyr-D-Ala-Gly-Phe-NH2 and its analogues are potent and selective ligands for μ opiate sites14,15. If the δ receptors were closely clustered, as suggested by our findings with dimeric enkephalin pentapeptides11,12 and by others7,13, then it might be possible to form a dimeric analogue of the tetrapeptide enkephalin which could interact with two δ receptors but not with two μ receptors. Theoretically, this would confer δ selectivity on the dimer of a μ-selective ligand. We have thus synthesized a series of dimeric analogues of the μ -selective tetrapeptide [D-Ala2, des-Leu5]enkephalin amide by cross-linking at the C-terminus with NH2-(CH2)n-NH2, with n = 2–12. We report here that the dimer with n = 12 has a nearly 1,000-fold increase in δ/μ selectivity ratio, and is thus a δ-selective ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E. & Gilbert, P. E. J. Pharmac. exp. Ther. 197, 517–532 (1976).

    CAS  Google Scholar 

  2. Lord, J. A. H., Waterfield, A. A., Hughes, J. & Kosterlitz, H. W. Nature 267, 495–499 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Simantov, R., Childers, S. R. & Snyder, S. H. Eur. J. Pharmac. 47, 319–331 (1978).

    Article  CAS  Google Scholar 

  4. Robson, L. E. & Kosterlitz, H. W. Proc. R. Soc. B205, 425–432 (1979).

    ADS  CAS  Google Scholar 

  5. Chang, K.-J. & Cuatrecasas, P. J. biol. Chem. 254, 2610–2618 (1979).

    CAS  Google Scholar 

  6. Wuster, M., Schulz, R. & Herz, A. Life Sci. 27, 163–170 (1980).

    Article  CAS  Google Scholar 

  7. Hazum, E., Chang, K.-J. & Cuatrecasas, P. Proc. natn. Acad. Sci. U.S.A. 77, 3038–3041 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Goodman, R. R., Snyder, S. H., Kuhar, M. J. & Young, W. S. III Proc. natn. Acad. Sci. U.S.A. 77, 6239–6243 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Kosterlitz, H. W., Lord, J. A. H., Paterson, S. J. & Waterfield, A. A. Br. J. Pharmac. 68, 333–342 (1980).

    Article  CAS  Google Scholar 

  10. Rónai, A. Z. et al. Eur. J. Pharmac. 69, 263–271 (1981).

    Article  Google Scholar 

  11. Costa, T., Shimohigashi, Y., Matsuura, S., Chen, H.-C. & Rodbard, D. in Peptides; Proc. 7th Am. Peptide Symp. (eds Rich, D. H. & Gross, E.) 625–628 (Pierce Chemical, Rockford, 1981).

    Google Scholar 

  12. Shimohigashi, Y., Costa, T., Matsuura, S., Chen, H.-C. & Rodbard, D. Molec. Pharmac. 21, 558–563 (1982).

    CAS  Google Scholar 

  13. Snyder, S. H. Science 209, 976–983 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Rónai, A. Z., Székely, J. I., Berzétei, I., Miglécz, E. & Bajusz, S. Biochem. biophys. Res. Commun. 91, 1239–1249 (1979).

    Article  Google Scholar 

  15. McGregor, W. H., Stein, L. & Belluzzi, J. D. Life Sci. 23, 1371–1378 (1978).

    Article  CAS  Google Scholar 

  16. Chang, K.-J., Miller, R. J. & Cuatrecasas, P. Molec. Pharmac. 14, 961–970 (1978).

    CAS  Google Scholar 

  17. Pert, C. B. & Snyder, S. H. Molec. Pharmac. 10, 868–879 (1974).

    CAS  Google Scholar 

  18. Gacel, G., Fournie-Zaluski, M. C., Fellion, E. & Roques, B. P. J. med. Chem. 24, 1119–1124 (1981).

    Article  CAS  Google Scholar 

  19. Munson, P. J. & Rodbard, D. Analyt. Biochem. 107, 220–239 (1980).

    Article  CAS  Google Scholar 

  20. DeLean, A., Munson, P. J. & Rodbard, D. Am. J. Physiol. 235, E97–E102 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimohigashi, Y., Costa, T., Chen, HC. et al. Dimeric tetrapeptide enkephalins display extraordinary selectivity for the δ opiate receptor. Nature 297, 333–335 (1982). https://doi.org/10.1038/297333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297333a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing