Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extensive elongation of axons from rat brain into peripheral nerve grafts

Abstract

The failure of axons to elongate in the injured central nervous system (CNS) of adult mammals restricts drastically the establishment of connections with target tissues situated more than a few millimetres away. Mechanisms that include a primary inability of some nerve cells to support renewed axonal growth, a premature formation of synapses on nearby neurones1, an obstruction caused by the formation of a glial scar2,3 and other influences of the microenvironment4–7 are presumed to contribute to the failure of nerve fibres to regenerate as effectively in the CNS as in the peripheral nervous system (PNS). Support for the hypothesis that conditions in the glial environment of injured fibres have a decisive role in successful axonal elongation has recently come from studies using transplants containing either central glia or peripheral nerve segments as conduits of axon growth7,8. While CNS glial grafts have been shown to prevent growth of PNS fibres7–9, experiments which used labelling techniques to trace the source of axons growing into PNS grafts provided evidence that processes from nerve cells in the spinal cord and medulla oblongata of adult rats may increase in length by 1 or more centimetres when the CNS glial environment is replaced by that of peripheral nerves10,11. Here we report for the first time the extensive elongation of axons from neurones in the brain of adult rats through PNS grafts introduced into the cerebral hemispheres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bernstein, J. J. & Bernstein, M. E. Expl Neurol. 30, 336–361 (1971).

    Article  CAS  Google Scholar 

  2. Windle, W. F. Physiol. Rev. 36, 426–440 (1956).

    Article  Google Scholar 

  3. Clemente, C. Int. Rev. Neurobiol. 6, 257–301 (1964).

    Article  CAS  Google Scholar 

  4. Cajal, S. R. Degeneration and Regeneration of the Nervous System (ed. May, R.M.)(Oxford University Press, London 1928).

    Google Scholar 

  5. Tello, F. Trab. Lab. Invest. biol. Univ. Madr. 9, 123–159 (1911).

    Google Scholar 

  6. Varon, S. Expl Neurol. 54, 1–6 (1977).

    Article  CAS  Google Scholar 

  7. Aguayo, A. J., Bray, G. M., Perkins, C. S. & Duncan, I. D. Soc. Neurosci. Symp. 4, 361–383 (1979).

    Google Scholar 

  8. Aguayo, A. J., David, S., Richardson, P. & Bray, G. M. Advances in Cellular Neurobiology (eds Fedoroff, S. & Hertz, L.) Vol. 3, 215–234 (Academic, New York, 1982).

    Google Scholar 

  9. Weinberg, E. L. & Spencer, P. S. Brain Res. 162, 273–279 (1979).

    Article  CAS  Google Scholar 

  10. Richardson, P. M., McGuinness, U. M. & Aguayo, A. J. Nature 284, 264–265 (1980).

    Article  ADS  CAS  Google Scholar 

  11. David, S. & Aguayo, A. J. Science 214, 931–933 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Mesulam, M.-M. J. Histochem. Cytochem. 26, 106–117 (1978).

    Article  CAS  Google Scholar 

  13. Liu, C. N. & Chambers, W. W. Archs Neurol. Psychiat., Lond. 79, 46–61 (1958).

    Article  CAS  Google Scholar 

  14. Raisman, G. & Field, P. M. Brain Res. 50, 241–264 (1973).

    Article  CAS  Google Scholar 

  15. Goldberger, M. E. & Murray, M. in Neuronal Plasticity (ed. Cotman, C. W.) 73–96 (Raven, New York, 1978).

    Google Scholar 

  16. Lundborg, G., Longo, F. L. & Varon, S. Brain Res. 232, 157–161 (1982).

    Article  CAS  Google Scholar 

  17. Ebendal, T. & Richardson, P. M. Proc. 11th ann. Meet. Soc. Neurosci. (1981).

  18. Graybiel, A. M. & Ragsdale, C. W. Prog. Brain Res. 51, 239–284 (1979).

    Article  Google Scholar 

  19. Pellegrino, L. J., Pellegrino, A. S. & Cushman, A. J. A Stereotaxic Atlas of the Rat Brain (Plenum, New York, 1979).

    Google Scholar 

  20. Lasek, R. J. & Hoffman, P. N. Cell Motility (eds Goldman, R., Pollard, T. & Rosenbaum, J.) 1021–1051 (Cold Spring Harbor Laboratory, New York, 1976).

    Google Scholar 

  21. Grafstein, B. & McQuarrie, I. G. in Neuronal Plasticity (ed. Cotman, C. W.) 155–195 (Raven, New York, 1978).

    Google Scholar 

  22. Varon, S. S. & Bunge, R. P. A. Rev. Neurosci. 1, 327–361 (1978).

    Article  CAS  Google Scholar 

  23. Bunge, R. P. & Bunge, M. B. J. Cell Biol. 78, 943–950 (1978).

    Article  CAS  Google Scholar 

  24. Sidman, R. L. & Wessells, N. K. Expl. Neurol. 48, 237–251 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benfey, M., Aguayo, A. Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296, 150–152 (1982). https://doi.org/10.1038/296150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing