Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inter-replicon transposition of Tn1/3 occurs in two sequential genetically separable steps

Abstract

The 4,957-base pair (bp) transposon Tn3 encodes three polypeptides, two of which are needed for normal inter-replicon transposition and one, β-lactamase, which is responsible for the transposon's ampicillin resistance (Apr)1,2. The closely related transposon Tn1 specifies three interchangeable polypeptides of identical function. The 1,015-amino acid tnpA protein is essential for transposition, whereas the 185-residue tnpR protein regulates the rate of transposition3,4 and is required for the generation of normal end products of inter-replicon transposition5,6. Here we report the inter-replicon transposition properties of tnpA tnpR derivatives of both Tn1 and Tn3. We show that the tnpA product is sufficient to generate a transpositional co-integrate intermediate in which the donor and recipient replicons become fused between two directly repeated copies of the transposon. In the absence or presence of tnpA product, such co-integrates are efficiently converted to normal transposition end products in the presence of tnpR protein. Two amber mutants selected because of their derepressed tnpR-mediated control of transposition are also unable to resolve co-integrate intermediates in a Sup0 (suppressor minus) background. For each mutant, both mutant phenotypes are suppressed by SupD and SupE but not by SupF, confirming that the tnpR coding sequence specifies a single protein having both functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gill, R. E., Heffron, F. & Falkow, S. Nature 282, 797–801 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Heffron, F., McCarthy, B. J., Ohtsubo, H. & Ohtsubo, E. Cell 18, 1153–1163 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Chou, J., Casadaban, M. J., Lemaux, P. G. & Cohen, S. N. Proc. natn. Acad. Sci. U.S.A. 76, 4020–4024 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Chou, J., Lemaux, P. G., Casadaban, M. J. & Cohen, S. N. Nature 282, 801–806 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Arthur, A. & Sherratt, D. J Molec. gen. Genet. 175, 267–274 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Sherratt, D., Arthur, A. & Burke, M. Cold Spring Harb. Symp. quant. Biol. 45, 275–284 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Reed, R. R. Proc. natn. Acad. Sci. U.S.A. 78, 3428–3432 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Bolivar, F. Life Sci. 25, 807–817 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Chang, A. C. Y. & Cohen, S. N. J. Bact. 134, 1141–1156 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Datta, N. & Hedges, R. W. J. gen. Microbiol. 72, 349–355 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Gill, R., Heffron, F., Dougan, G. & Falkow, S. J. Bact. 136, 742–756 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Reed, R. R. Cell 25, 713–719 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Reed, R. R. & Grindley, N. D. F. Cell 25, 721–728 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitts, P., Lamond, A. & Sherratt, D. Inter-replicon transposition of Tn1/3 occurs in two sequential genetically separable steps. Nature 295, 626–628 (1982). https://doi.org/10.1038/295626a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295626a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing