Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium

Abstract

It is generally accepted that bending of a cilium is caused by active sliding between outer doublets in the cilium produced by ATP-driven activation of their dynein–tubulin cross-bridges1–3. Changes with time in the location and extent of the active sliding regions in the outer doublets are thought to be primarily responsible for the changing shape of a beating cilium. However, using conventional techniques of biochemistry and electron microscopy, it is difficult to identify the regions on the outer doublets where active sliding occurs4. Here we have used computer simulation of the beating of a cilium to investigate changes in the distribution of activated cross-bridges, and hence of active sliding, in the nine outer doublets. Hereafter, the pattern of this distribution will be termed ‘cross-bridge pattern’. Published data have indicated that there is a periodically changing series of cross-bridge patterns in the nine outer doublets. On this assumption, the computer mimicked relatively well the beating of a cilium of Paramecium in media of both normal and high viscosity. The computer also simulated flagellar-type beating5, in which the cross-bridge patterns were modified slightly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Satir, P. J. Cell Biol. 26, 805–834 (1965).

    Article  CAS  Google Scholar 

  2. Satir, P. J. Cell Biol. 39, 77–94 (1968).

    Article  CAS  Google Scholar 

  3. Summers, K. E. & Gibbons, I. R. Proc. natn. Acad. Sci. U.S.A. 68, 3092–3096 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Omoto, C. K. & Kung, C. J. Cell Biol. 87, 33–46 (1980).

    Article  CAS  Google Scholar 

  5. Kuznizki, L., Jahn, T. L. & Fonseca, J. R. J. Protozool. 17, 16–24 (1970).

    Article  Google Scholar 

  6. Ikeda, K., Nishihara, S., Isohama, K. & Nakayama, K. J. Inf. Processing 2, 231 (1980).

    Google Scholar 

  7. Sale, W. S. & Satir, P. Proc. natn. Acad. Sci. U.S.A. 74, 2045–2049 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Yano, Y. & Miki-Noumura, T. J. Cell Sci. 44, 169–186 (1980).

    CAS  PubMed  Google Scholar 

  9. Kamimura, S. & Takahashi, K. Zool. Mag, Tokyo 88, 513 (1979).

    Google Scholar 

  10. Lindemann, C. B., Rudd, W. G. & Rikmenspoel, R. Biophys. J. 13, 437–448 (1973).

    Article  CAS  Google Scholar 

  11. Shingyoji, C., Murakami, A. & Takahashi, K. Nature 265, 269–270 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Kuznicki, L. Acta protozool. 1, 301–312 (1963).

    CAS  Google Scholar 

  13. Naitoh, Y. Science 154, 660–662 (1966).

    Article  ADS  CAS  Google Scholar 

  14. Eckert, R. & Naitoh, Y. J. gen. Physiol. 55, 467–483 (1970).

    Article  CAS  Google Scholar 

  15. Gray, J. Ciliary Movement (Cambridge University Press, 1928).

    Google Scholar 

  16. Wais-Steider, J. & Satir, P. J. supramolec. Struct. 11, 339–347 (1979).

    Article  CAS  Google Scholar 

  17. Sugino, K. & Naitoh, Y. Zool Mag, Tokyo 89, 444 (1980).

    Google Scholar 

  18. Bradfield, J. R. G. Symp. Soc. exp. Biol. 9, 306–334 (1955).

    Google Scholar 

  19. Afzelius, B. J. biophys. biochem. Cytol. 5, 269–281 (1959).

    Article  CAS  Google Scholar 

  20. Machemer, H. Acta protozool. 11, 295–300 (1970).

    Google Scholar 

  21. Machemer, H. J. exp. Biol. 57, 239–259 (1972).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugino, K., Naitoh, Y. Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium. Nature 295, 609–611 (1982). https://doi.org/10.1038/295609a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295609a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing