Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aneural muscle cell cultures make synaptic basal lamina components

Abstract

The basal lamina that runs between the presynaptic and post-synaptic membranes at the neuromuscular junction has distinctive functional properties1–3 amd differs in molecular composition from the extrasynaptic basal lamina to which it is attached4,5. In regenerating muscle, synaptic basal lamina can direct the accumulation both of neuronal transmitter vesicles at specific sites near the presynaptic nerve terminal membrane and of acetylcholine receptors (AChRs) in the postsynaptic muscle membrane1–3. Four components that are concentrated in synaptic basal lamina, but are not detectable in extrasynaptic basal lamina, have been recognized. The first is a particular form of acetylcholinesterase (AChE), the A12 or 16S species, which is concentrated at the synapse in rats6,7 and mice8; its distinctive feature is thought to be a long collagen-like tail9 that attaches it to the basal lamina10. Three other components of the synaptic basal lamina have been distinguished immunocytochemically using antisera raised against basement membrane extracts or collagen-rich preparations4. Although it has been previously reported that aneural muscle cell cultures may make the 16S form of AChE11,12, the role of the nerve in the synthesis and organization of the synaptic basal lamina is unknown. We report here that cells of a mouse muscle line, in the absence of nerves, have surface accumulations of each of the four synaptic basal lamina components described above: the 16S AChE, and cross-reactive antigens recognized by each of the synapse-specific antisera.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sanes, J. R., Marshall, L. M. & McMahan, U. J. J. Cell Biol. 78, 176–198 (1978).

    Article  CAS  Google Scholar 

  2. Burden, S. J., Sargent, P. B. & McMahan, U. J. J. Cell Biol. 82, 412–425 (1979).

    Article  CAS  Google Scholar 

  3. Bader, D. J. Cell Biol. 88, 338–345 (1981).

    Article  CAS  Google Scholar 

  4. Sanes, J. R. & Hall, Z. W. J. Cell Biol. 83, 357–370 (1979).

    Article  CAS  Google Scholar 

  5. Sanes, J. R. J. supramolec. Struct. cell. Biochem. Suppl. 5, Abstr. 821 (1981).

  6. Hall, Z. W. J. Neurobiol. 4, 343–361 (1973).

    Article  CAS  Google Scholar 

  7. Vigny, M., Koenig, J. & Rieger, F. J. Neurochem. 27, 1347–1353 (1976).

    Article  CAS  Google Scholar 

  8. Inestrosa, N. C., Silberstein, L. & Hall, Z. W. (submitted).

  9. Bon, S., Vigny, M. & Massoulie, J. Proc. nain. Acad. Sci. U.S.A. 76, 2546–2550 (1979).

    Article  ADS  CAS  Google Scholar 

  10. McMahan, U. J., Sanes, J. R. & Marshall, L. M. Nature 271, 172–174 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Sugiyama, H. FEBS Lett. 84, 257–260 (1977).

    Article  CAS  Google Scholar 

  12. Koenig, J. & Vigny, M. Nature 271, 75–77 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Yaffe, D. & Saxel, O. Nature 270, 725–727 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Ellman, G. L., Courtney, K. D., Andres, V. & Featherstone, R. M. Biochem. Pharmac. 7, 88–95 (1961).

    Article  CAS  Google Scholar 

  15. Karnovsky, M. J. & Roots, L. J. Histochem. Cytochem. 12, 219–221 (1969).

    Article  Google Scholar 

  16. Koenig, J. Biol. Cell. 35, 147–152 (1979).

    Google Scholar 

  17. Rubin, L. L., Schuetze, S. M. & Fischbach, G. D. Devl Biol. 69, 46–58 (1979).

    Article  CAS  Google Scholar 

  18. Rubin, L. L., Schuetze, S. M., Weill, C. L. & Fischbach, G. D. Nature 283, 264–267 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Inestrosa, N. C., Silberstein, L. & Hall, Z. W. J. supramolec. Struct. cell. Biochem. Suppl. 5, Abstr. 812 (1981).

  20. White, N. K. & Hauschka, S. D. Expl Cell Res. 67, 479–482 (1971).

    Article  CAS  Google Scholar 

  21. Hauschka, S. D. & White, N. K. in Research Concepts in Muscle Development and the Muscle Spindle (eds Banker, B. Q. et al.) 53–71 (Excerpta Medica, Amsterdam, 1971).

    Google Scholar 

  22. Bonner, P. H. & Hauschka, S. D. Devl Biol. 37, 317–328 (1974).

    Article  CAS  Google Scholar 

  23. White, N. K., Bonner, P. H., Nelson, D. R. & Hauschka, S. D. Devl Biol. 44, 346–361 (1975)

    Article  CAS  Google Scholar 

  24. Bonner, P. H. Devl Biol. 66, 207–219 (1978).

    Article  CAS  Google Scholar 

  25. Bonner, P. H. Devl Biol. 76, 79–86 (1980).

    Article  CAS  Google Scholar 

  26. Weinberg, C. B., Sanes, J. R. & Hall, Z. W. Devl Biol. 84, 255–266 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silberstein, L., Inestrosa, N. & Hall, Z. Aneural muscle cell cultures make synaptic basal lamina components. Nature 295, 143–145 (1982). https://doi.org/10.1038/295143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295143a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing