Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis

Abstract

Gravitationally induced displacements of the contents of the frog egg can predictably determine the orientation of the subsequent dorsal–ventral axis of the embryo, regardless of the original position of sperm entry or of the grey crescent. In certain conditions, these displacements in the egg can also lead to the formation of a second axis, that is, to twinning. The previously reported ability of grafts of grey crescent cortex to induce secondary axes in recipient eggs is interpreted here as an unrecognized twinning effect of gravity. Our results lead us to question the classic interpretation of the grey crescent as a dorsal determinant in amphibian development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pasteels, J. J. Archs Biol., Paris 49, 629–667 (1938); Folia biotheor. 3, 83–108 (1948); Adv. Morphogen. 3, 363–388 (1964).

    Google Scholar 

  2. Brachet, J. Curr. Topics dev. Biol. 11, 133–186 (1977).

    Article  CAS  Google Scholar 

  3. Nieuwkoop, P. D. Wilhelm Roux's Arch. dev. Biol. 162, 341–373 (1969); 163, 298–315 (1969); Adv. Morphogen. 10, 1–39 (1973); Curr. Topics dev. Biol. 11, 115–132 (1977).

    Article  CAS  Google Scholar 

  4. Gerhart, J. C. in Biological Regulation and Development Vol. 2 (ed. Goldberger, R.) 133–316 (Plenum, New York, 1980).

    Book  Google Scholar 

  5. Spemann, H. Embryonic Development and Induction (Yale University Press, New Haven, 1938).

    Book  Google Scholar 

  6. Spemann, H. & Mangold, H. Wilhelm Roux's Arch. dev. Biol. 100, 599–638 (1924).

    Google Scholar 

  7. Dalcq, A. & Pasteels, J. Archs Biol., Paris 48, 669–710 (1937).

    Google Scholar 

  8. Curtis, A. S. G. J. Embryol. exp. Morph. 8, 163–173 (1960); 10, 410–422 (1962).

    CAS  PubMed  Google Scholar 

  9. Nieuwkoop, P. D. & Ubbels, G. A. Wilhelm Roux's Arch. dev. Biol. 169, 185–199 (1972).

    Article  CAS  Google Scholar 

  10. Boterenbrood, E. C. & Nieuwkoop, P. D. Wilhelm Roux's Arch. dev. Biol. 173, 319–332 (1973).

    Article  CAS  Google Scholar 

  11. Nieuwkoop, P. D. & Florschutz, P. Archs Biol., Paris 61 113–150 (1950).

    Google Scholar 

  12. Keller, R. E. Devl Biol. 51, 118–137 (1976).

    Article  CAS  Google Scholar 

  13. Palaĉek, J., Ubbels, G. A. & Rzehak, K. J. Embryol. exp. Morph. 45, 203–214 (1978).

    Google Scholar 

  14. Ubbels, G. A., Hara, K. Korster, C. H. & Kirschner, M. W. (in preparation).

  15. Ancel, P. & Vintemberger, P. Bull. biol. Fr. Belg. 31, 1–182 (1948); Archs Anat. microsc. Morph. exp. 38, 167–183 (1949).

    Google Scholar 

  16. Kirschner, M. & Hara, K. Mikroskopie 36, 12–15 (1980).

    CAS  PubMed  Google Scholar 

  17. Ancel, P. & Calame, S. C. r. hebd. Séanc. Acad. Sci., Paris 248, 893–895 (1959).

    CAS  Google Scholar 

  18. Manes, M. E., Elinson, R. P. & Barbieri, F. D. Wilhelm Roux's Arch. dev. Biol. 185, 99–104 (1978).

    Article  CAS  Google Scholar 

  19. Manes, M. & Elinson, R. P. Wilhelm Roux's Arch dev. Biol. 189, 73–76 (1980).

    Article  Google Scholar 

  20. Kubota, T. J. Embryol. exp. Morph. 17, 331–340 (1967).

    Google Scholar 

  21. Schultze, O. Wilhelm Roux's Arch. dev. Biol. 1, 160–204 (1894).

    Google Scholar 

  22. Penners, A. & Schleip, W. Z. wiss. Zool. 130, 305–454 (1928); 131, 1–156 (1928).

    Google Scholar 

  23. Penners, A. Wilhelm Roux's Arch. dev. Biol. 116, 53–103 (1929); Z. wiss. Zool. 148, 189–220 (1936).

    Article  CAS  Google Scholar 

  24. Elinson, R. P. Symp. Soc. dev. Biol. 38, 217–234 (1980).

    Google Scholar 

  25. Lovtrup, S. Wilhelm Roux's Arch. dev. Biol. 156, 204–248 (1965).

    Article  Google Scholar 

  26. Klag, J. J. & Ubbels, G. A. Differentiation 3, 15–20 (1975).

    Article  Google Scholar 

  27. Subtelny, S. & Bradt, C. J. Morph. 112, 45–60 (1963).

    Article  CAS  Google Scholar 

  28. Kirschner, M., Gerhart, J. C., Hara, K. & Ubbels, G. A. Symp. Soc. dev. Biol. 38, 187–215 (1980).

    Google Scholar 

  29. Scharf, S. R. & Gerhart, J. C. Devl Biol. 79, 181–198 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhart, J., Ubbels, G., Black, S. et al. A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292, 511–516 (1981). https://doi.org/10.1038/292511a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292511a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing