Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mobility of polypeptide chain in the pyruvate dehydrogenase complex revealed by proton NMR

Abstract

Recent studies of several small proteins by NMR spectroscopy and X-ray crystallography have clearly demonstrated significant internal mobility in their structures (see, for example, refs 1–9), which can involve not only amino acid side chains but also larger regions of polypeptide chain. Occasionally a plausible function for this mobility has been suggested1,9, but there has been no conclusive evidence for a direct connection between intramolecular mobility and a defined step in an enzymatic mechanism. The pyruvate dehydrogenase (PDH) multienzyme complex of Escherichia coli (molecular weight (Mr) 4.5–6 ×106) is one of the largest well defined assemblies of proteins known, comprising multiple copies of three different enzymes10,11. The substrate is carried in thioester linkage by lipoyl–lysine residues of the lipoate acetyltransferase component, the structural core of the complex. The lipoyl–lysine residues act as swinging arms, carrying substrate between the catalytic centres of the three enzymes12–15 and between lipoic acid residues attached to different subunits in the lipoate acetyltransferase core16–18. It has been conjectured that the lipoic acid-containing regions of polypeptide chain might be flexible19,20 and therefore able to increase greatly the effective radius of a swinging arm19. We report here unexpectedly sharp lines in the 270-MHz proton NMR spectrum of the enzyme complex that are attributed to remarkable conformational mobility of large regions of polypeptide chain carrying the lipoic acid residues. This mobility would enhance the functional connection of active sites in a multisubunit structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gurd, F. R. N. & Rothgeb, T. M. Adv. Protein Chem. 33, 73–165 (1979).

    Article  CAS  Google Scholar 

  2. Williams, R. J. P. Biol. Rev. 54, 389–437 (1979).

    Article  CAS  Google Scholar 

  3. Frauenfelder, H., Petsko, G. A. & Tsemoglou, D. Nature 280, 558–563 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Artymuik, P. I. et al. Nature 280, 563–568 (1979).

    Article  ADS  Google Scholar 

  5. Campbell, I. D., Dobson, C. M., Moore, G. R., Perkins, S. J. & Williams, R. J. P. FEBS Lett. 70, 96–100(1976).

    Article  CAS  Google Scholar 

  6. Wagner, G., De Marco, A. & Wüthrich, K. Biophys. Struct. Mech. 2, 139–158 (1976).

    Article  CAS  Google Scholar 

  7. Ribeiro, A. A., King, R., Restivo, C. & Jardetzky, O. J. Am. chem. Soc. 102, 4040–4051 (1980).

    Article  CAS  Google Scholar 

  8. Jardetzky, O., Adasaka, K., Vogel, D., Morris, S. & Holmes, K. C. Nature 273, 564–566 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Highsmith, S. et al. Biochemistry 18, 4238–4244.

  10. Reed, L. J. Acc. chem. Res. 7, 40–46 (1974).

    Article  CAS  Google Scholar 

  11. Danson, M. J. et al. J. molec. Biol. 129, 603–617 (1979).

    Article  CAS  Google Scholar 

  12. Green, D. E. & Oda, T. J. Biochem., Tokyo 49, 742–757 (1961).

    Article  CAS  Google Scholar 

  13. Koike, M., Reed, L. J. & Carroll, W. R. J. biol. Chem. 238, 30–39 (1963).

    CAS  PubMed  Google Scholar 

  14. Ambrose, M. C. & Perham, R. N. Biochem. J. 159, 429–432 (1976).

    Article  Google Scholar 

  15. Grande, H. J., Van Telgen, H. J. & Veeger, C. Eur. J. Biochem. 71, 509–518 (1976).

    Article  CAS  Google Scholar 

  16. Bates, D. L., Danson, M. J., Hale, G., Hooper, E. A. & Perham, R. N. Nature 268, 313–316 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Collins, J. H. & Reed, L. J. Proc. natn. Acad. Sci. U.S.A. 74, 4223–4227 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Danson, M. J., Fersht, A. R. & Perham, R. N. Proc. natn. Acad. Sci. U.S.A. 75, 5386–5390 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Hale, G. & Perham, R. N. FEBS Lett. 105, 263–266 (1979).

    Article  CAS  Google Scholar 

  20. Bleile, D. M., Munk, P., Oliver, R. M. & Reed, L. J. Proc. natn. Acad. Sci. U.S.A. 76, 4385–4389 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Woessner, D. E., Snowenden, B. S. Jr & Meyer, G. H. J. chem. Phys. 50, 719–721 (1969).

    Article  ADS  CAS  Google Scholar 

  22. Werbelow, L. G. & Marshall, A. G. J. Am. chem. Soc. 95, 5132–5134 (1973).

    Article  CAS  Google Scholar 

  23. Bates, D. L., Harrison, R. A. & Perham, R. N. FEBS Lett. 60, 427–430 (1975).

    Article  CAS  Google Scholar 

  24. Reed, L. J. & Willms, C. R. Meth. Enzym. 9, 247–265 (1966).

    Article  CAS  Google Scholar 

  25. Coggins, J. R., Hooper, E. A. & Perham, R. N. Biochemistry 15, 2527–2533 (1976).

    Article  CAS  Google Scholar 

  26. Wüthrich, K. NMR in Biological Research (Elsevier, Amsterdam, 1976).

    Google Scholar 

  27. Jardetzky, O. & Roberts, G. C. K. NMR in Molecular Biology (Academic, New York, 1981).

    Google Scholar 

  28. Danson, M. J. & Perham, R. N. Biochem J. 159, 677–682 (1976).

    Article  CAS  Google Scholar 

  29. Hale, G. & Perham, R. N. Eur. J. Biochem. 94, 119–126 (1979).

    Article  CAS  Google Scholar 

  30. Shepherd, G. B. & Hammes, G. G. Biochemistry 15, 311–317 (1976).

    Article  CAS  Google Scholar 

  31. Angelides, K. J. & Hammes, G. G. Biochemistry 18, 1223–1229 (1979).

    Article  CAS  Google Scholar 

  32. Scouten, W. H. et al. Eur. J. Biochem. 112, 9–16 (1980).

    Article  CAS  Google Scholar 

  33. Ambrose-Griffin, M. C., Danson, M. J., Griffin, W. G., Hale, G. & Perham, R. N. Biochem. J. 187, 393–401 (1980).

    Article  CAS  Google Scholar 

  34. Angelides, K. J. & Hammes, G. G. Proc. natn. Acad. Sci. U.S.A. 75, 4877–4880 (1978).

    Article  ADS  CAS  Google Scholar 

  35. Akiyama, S. K. & Hammes, G. G. Biochemistry 19, 4208–4213 (1980).

    Article  CAS  Google Scholar 

  36. Cate, R. L., Roche, T. E. & Davis, L. C. J. biol. Chem. 255, 7556–7562 (1980).

    CAS  PubMed  Google Scholar 

  37. Berman, J. N., Chen, G.-X., Hale, G. & Perham, R. N. Biochem. J. (submitted).

  38. Reed, L. J. et al. Proc. natn. Acad. Sci. U.S.A. 72, 3068–3072 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perham, R., Duckworth, H. & Roberts, G. Mobility of polypeptide chain in the pyruvate dehydrogenase complex revealed by proton NMR. Nature 292, 474–477 (1981). https://doi.org/10.1038/292474a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292474a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing