Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Allosteric regulation of crocodilian haemoglobin

Abstract

The oxygen affinity of most vertebrate haemoglobins in the absence of diffusible electrolytes is much higher than that of blood. In the red cell this affinity is lowered by organic phosphates, hydrogen ions, chloride ions and CO2 (refs 1–5). Similarly, crocodilian haemoglobin also has a much higher oxygen affinity than crocodile blood, but this is due to bicarbonate ions6, as neither phosphates nor carbamino CO2 lower its oxygen affinity, and chloride does so only weakly7. The complete sequences of the haemoglobins of the caiman, the Nile crocodile and the Mississippi alligator (to be reported elsewhere8) show 102 substitutions between human and caiman, and 123 between human and the other two crocodilian haemoglobins. Here we consider how these substitutions may explain the changes in allosteric control, and also their bearing on the phylogenetic relationships between the crocodilians and other groups of bony vertebrates. We propose that a few of the substitutions abolish or weaken the binding sites for the usual allosteric effectors and create a new pair of binding sites which are complementary to bicarbonate ions in the deoxy (T) structure, but not in the oxy (R) structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baldwin, J. M. Prog. Biophys. molec. Biol. 29, 225–320 (1975).

    Article  CAS  Google Scholar 

  2. Perutz, M. F. Br. med. Bull. 32, 191–208 (1976).

    Article  Google Scholar 

  3. Kilmartin, J. V. et al. Biochim. biophys. Acta 534, 15–25 (1978).

    Article  CAS  Google Scholar 

  4. Kilmartin, J. V. & Rossi-Bernardi, L. Physiol. Rev. 53, 836–890 (1973).

    Article  CAS  Google Scholar 

  5. Kilmartin, J. V. Trends biochem. Sci. 2, 247–250 (1977).

    Article  CAS  Google Scholar 

  6. Bauer, C. et al. J. biol. Chem. (in the press).

  7. Bauer, C. & Jelkmann, W. Nature 269, 825–827 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Leclercq, F., Schnek, A. G., Braunitzer, G., Stangl, A. & Schrank, B. Hoppe-Seyler's Z. physiol. Chem. (in the press).

  9. Arnone, A. Nature 237, 146–149 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Bunn, H. F. & Briehl, R. W. J. clin. Invest. 49, 1088–1095 (1970).

    Article  CAS  Google Scholar 

  11. Arnone, A., Rogers, P. H. & Briley, P. D. in Biophysics and Physiology of Carbon Dioxide (eds Bauer, C., Gros, G. & Bartels, H.) 67–74 (Springer, Berlin, 1980).

    Book  Google Scholar 

  12. O'Donnell, S., Mandaro, R., Schuster, T. M. & Arnone, A. J. biol. Chem. 254, 12204–12208 (1979).

    CAS  PubMed  Google Scholar 

  13. Imai, K. J. biol. Chem. 249, 7607–7612 (1974).

    CAS  PubMed  Google Scholar 

  14. Perutz, M. F., Fersht, A. R., Simon, S. R. & Roberts, G. C. K. Biochemistry 13, 2174–2186 (1974).

    Article  CAS  Google Scholar 

  15. Fermi, G. & Perutz, M. F. J. molec. Biol. 114, 421–431 (1977).

    Article  CAS  Google Scholar 

  16. Perutz, M. F. et al. J. molec. Biol. 138, 649–670 (1980).

    Article  CAS  Google Scholar 

  17. Jelkmann, W. & Bauer, C. Comp. Biochem. Physiol. A 65, 331–336 (1980).

    Article  Google Scholar 

  18. Romero-Herrera, A. E., Lehmann, H., Joysey, K. A. & Friday, A. E. Nature 246, 389–395 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Romero-Herrera, A. E., Lehmann, H., Joysey, K. A. & Friday, A. E. Phil. Trans. R. Soc. B283, 61–163 (1978).

    Article  CAS  Google Scholar 

  20. Fermi, G. J. molec. Biol. 97, 237–256 (1975).

    Article  CAS  Google Scholar 

  21. R., Diamond in Biomolecular Structure, Conformation and Evolution Vol. 1 (ed. Srinivasan, R.) 567–588 (Pergamon, Oxford, 1980).

    Google Scholar 

  22. Farris, J. S. Am. Nat. 106, 645–668 (1972).

    Article  Google Scholar 

  23. Joysey, K. A. Symp. zool. Soc. Lond. 46 (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perutz, M., Bauer, C., Gros, G. et al. Allosteric regulation of crocodilian haemoglobin. Nature 291, 682–684 (1981). https://doi.org/10.1038/291682a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291682a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing