Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differences between germ-line and rearranged immunoglobulin Vκ coding sequences suggest a localized mutation mechanism

Abstract

Several mechanisms contribute to the generation of an antibody repertoire (for reviews see refs 1–3) which has been estimated to exceed 106 different types of immunoglobulin molecules4. It is clear that the germ line contains a fair number of V-gene segments2,5–7. The V-gene segments are joined by somatic recombination to J- and D-gene segments8–11 and there is, of course, combinatorial association of heavy and light chains. It has been suggested that the germ-line repertoire of gene segments and their combinatorial joining are the principal sources of antibody diversity12. In fact, two rearranged Vκ-gene segments have been found to be identical in sequence to their germ-line counterparts12,13, showing that no somatic point mutations had occurred. In the genes for a λI light chain14 and for two heavy chains10,15, on the other hand, the rearranged V-gene segments differed in several positions from their germ-line equivalents; this is explained by somatic point mutations. We now report the finding of six single-base pair differences each between two rearranged Vκ-gene segments and their presumptive germ-line equivalents and the absence of any such differences in the adjacent non-coding regions; this suggests the existence of localized mutation mechanism(s) in this Vκ gene system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tonegawa, S., Brack, C., Hozumi, N., Matthyssens, G. & Schuller, R. Immun. Rev. 36, 73–94 (1977).

    Article  CAS  Google Scholar 

  2. Seidman, J. G., Leder, A., Nau, M., Norman, B. & Leder, P. Science 202, 11–17 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Robertson, M. Nature 290, 625–627 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Williamson, A. R. A. Rev. Biochem. 45, 467–500 (1976).

    Article  CAS  Google Scholar 

  5. Potter, M. Adv. Immun. 25, 141–211 (1977).

    Article  CAS  Google Scholar 

  6. Rabbitts, T. H., Matthyssens, G. & Hamlyn, P. H. Nature 284, 238–243 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Steinmetz, M., Höchtl, J., Schnell, H., Gebhard, W. & Zachau, H. G. Nucleic Acids Res. 8, 1721–1729 (1980).

    Article  CAS  Google Scholar 

  8. Sakano, H., Hüppi, K., Heinrich, G. & Tonegawa, S. Nature 280, 288–294 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Max, E. E., Seidman, J. G. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 76, 3450–3454 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. Cell 19, 981–992 (1980).

    Article  CAS  Google Scholar 

  11. Rudikoff, S., Rao, D. N., Glaudemans, C. P. J. & Potter, M. Proc. natn. Acad. Sci. U.S.A. 77, 4270–4274 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Seidman, J. G., Max, E. E. & Leder, P. Nature 280, 370–375 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Max, E. E., Seidman, J. G., Miller, H. & Leder, P. Cell 21, 793–799 (1980).

    Article  CAS  Google Scholar 

  14. Bernard, O., Hozumi, N. & Tonegawa, S. Cell 15, 1133–1144 (1978).

    Article  CAS  Google Scholar 

  15. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. & Tonegawa, S. Nature 286, 676–683 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Steinmetz, M. & Zachau, H. G. Nucleic Acids Res. 8, 1693–1707 (1980).

    Article  CAS  Google Scholar 

  17. Altenburger, W., Steinmetz, M. & Zachau, H. G. Nature 287, 603–607 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Höchtl, J. thesis, Univ. München (1980).

  19. Kabat, E. A., Wu, T. T. & Bilofsky, H. NIH Publ. 80-2008 (1979).

  20. Hilschmann, N. et al. Naturwissenschaften 65, 616–639 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Altenburger, W., Neumaier, P. S., Steinmetz, M. & Zachau, H. G. Nucleic Acids Res. 9, 971–981 (1981).

    Article  CAS  Google Scholar 

  22. Adetugbo, K., Milstein, C. & Secher, D. S. Nature 265, 299–304 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Gearhart, P. J., Johnson, N. D., Douglas, R. & Hood, L. Nature 291, 29–34 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pech, M., Höchtl, J., Schnell, H. et al. Differences between germ-line and rearranged immunoglobulin Vκ coding sequences suggest a localized mutation mechanism. Nature 291, 668–670 (1981). https://doi.org/10.1038/291668a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291668a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing