Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fourier analysis of test shape of planktonic foraminifera

Abstract

The exact characterization of test shape is important in morphological studies of foraminifera and other marine micro-fossils Most biometrie studies of microfossils, however, have only measured test diameter or other linear components1. The tests of planktonic foraminifera exhibit a wide range of morphological traits, some of which are related to environmental conditions and others to the phylogenetic history of the taxon1,2. Mean test size or linear measurements of chambers and/or whole tests of fossil foraminifera can be used for palaeoecological interpretations from the morphological variations3–10. We report here that Fourier series analysis could be an objective and unambiguous biometric method for determining the components which comprise the shape of foraminifera. Fourier shape analysis has been successfully applied to fossil ostracods11,12 , fossil bryozoans13,14 and miospores15. In the present study, Fourier series shape analysis was performed on the planktonic foraminifera, Globorotalia truncatulinoides, from the southern Indian Ocean, to differentiate palaeo-environmentally significant trends in the test shape of this species. Kennett16 and Takayanagi et al.17 have used linear test measurements to describe latitudinal gradients in the test morphology of G. truncatulinoides. Highly conical forms dominate in tropical waters, whereas more compressed, biconvex forms dominate in cool water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scott, G. H. in Foraminifera Vol. 1 (eds Hedley, R. H. & Adams, C. G.) 55–151 (Academic, London, 1974).

    Google Scholar 

  2. Kennett, J. P. in Foraminifera Vol. 2 (eds Hedley, R. H. & Adams, C. G.) 111–170 (Academic, London, 1976).

    Google Scholar 

  3. Berger, W. H. J. Paleont. 43, 1369–1383 (1969).

    Google Scholar 

  4. Parker, F. L. Micropaleontology 8, 219–254 (1962).

    Article  Google Scholar 

  5. Hecht, A. D. J. Foram. Res. 6, 295–311 (1976).

    Article  Google Scholar 

  6. Hecht, A. D., Be, A. W. H. & Lott, L. Science 194, 422–424 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Malmgren, B. & Healy-Williams, N. Palaeogeogr. Palaeoclimatol. Palaeoecol. 25, 235–240 (1978).

    Article  Google Scholar 

  8. Be, A. W. H. Micropaleontology 19, 150–192 (1973).

    Article  Google Scholar 

  9. Malmgren, B. A. Mar. Micropaleont. 1, 3–25 (1976).

    Article  ADS  Google Scholar 

  10. Gradstein, F. M. Mediterranean Pliocene Globorotalia: A Biometrical Approach, 1–128 (Odijk, The Netherlands, 1974).

    Google Scholar 

  11. Younker, J. L. & Ehrlich, R. Syst. Zool. 26, 336–341 (1977).

    Article  Google Scholar 

  12. Kaesler, R. L. & Waters, J. A. Bull. geol. Soc. Am. 83, 1169–1178 (1972).

    Article  Google Scholar 

  13. Anstey, R. L. & Dehnet, D. A. Science 177, 1000–1002 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Anstey, R. L. & Delmet, D. A. Bull. geol. Soc. Am. 84, 1753–1764 (1973).

    Article  Google Scholar 

  15. Christopher, R. A. & Waters, J. A. J. Paleont. 48, 697–709 (1974).

    Google Scholar 

  16. Kennett, J. P. Science 159, 1461–1463 (1968).

    Article  ADS  CAS  Google Scholar 

  17. Takayanagi, Y., Niitsuma, N. & Sakai, T. Sci. Rep. Tohoku Univ. (Geol.) 40, 141–170 (1968).

    Google Scholar 

  18. Ehrlich, R. & Weinberg, B. J. sed. Petrol. 40, 205–212 (1970).

    Google Scholar 

  19. Christopher, R. A. & Waters, J. A. J. Paleont. 48, 697–709 (1974).

    Google Scholar 

  20. Gordon, A. L. in Antarctic Oceanology II, Ant. Res. Ser. Vol. 19 (ed. Hayes, D. E.) 3–9 (Am. Geophys. Union, Washington, 1972).

    Google Scholar 

  21. Williams, D. F. thesis, Univ. Rhode Island (1976).

  22. Prell, W. L., Hutson, W., Williams, D. F. & Be, A. W. H. Quat. Res. (in the press).

  23. Healy-Williams, N. (in preparation).

  24. Benzecri, J. P. in L'Analyse des Correspondances 619 (Dunod, Paris, 1973).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Healy-Williams, N., Williams, D. Fourier analysis of test shape of planktonic foraminifera. Nature 289, 485–487 (1981). https://doi.org/10.1038/289485a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289485a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing