Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives

Abstract

The biosynthesis of trans-3- and trans-4-hydroxyprolines and 5-hydroxylysine in animal cells requires polypeptide proline or lysine, enzymes and cofactors including iron, and possibly involves peroxidatic intermediates1. Several laboratories have reported the presence of low-molecular-weight hydroxyproline and hydroxylysine peptides in cell and organ cultures2–5. We found that these small peptides contained the trans-3 and cis-4 isomers of hydroxyproline as well as trans-4 ones and that their production was not completely inhibited by α, α-dipyridyl, an iron chelator and effective inhibitor of enzyme-mediated hydroxylations5. It is known that oxygen or hydrogen peroxide in the presence of metal can hydroxylate proline and other aromatic compounds6–11. We show here that reduced oxygen derivatives can hydroxylate both free and poly peptide-bound proline and lysine, and that scavengers of hydroxyl radicals suppress, but do not completely inhibit, this reaction. Reduced oxygen derivatives can be generated in normal and pathological circumstances12, and some of the low-molecular-weight hydroxyproline and hydroxylysine peptides found in cell and organ cultures might be derived from these derivatives and therefore do not reflect collagen turnover, but rather some other cellular activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Myllyla, R., Schubotz, L. M., Weser, U. & Kivirikko, K. Biochem. biophys. Res. Commun. 89, 98–102 (1979).

    Article  CAS  Google Scholar 

  2. Steinberg, J. J. Cell Sci. 12, 217–234 (1973).

    CAS  PubMed  Google Scholar 

  3. Nourse, P. N., Nourse, L. D. & Botes, H. S. Afr. J. Sci. 70, 231–234 (1974).

    CAS  Google Scholar 

  4. Bienkowski, R. S., Cowan, M. J., McDonald, J. A. & Crystal, R. G. J. biol Chem. 253, 4356–4363 (1978).

    CAS  PubMed  Google Scholar 

  5. Holmes, L. B. & Trelstad, R. L. Devl Biol. 72, 41–49 (1979).

    Article  CAS  Google Scholar 

  6. Chvapil, M. & Hurych, J. Nature 184, 1145 (1959).

    Article  ADS  CAS  Google Scholar 

  7. Lamport, D. T. A. Nature 202, 293–294 (1964).

    Article  ADS  CAS  Google Scholar 

  8. Yip, C. C. Biochim. biophys. Acta 92, 395–396 (1964).

    CAS  PubMed  Google Scholar 

  9. Gruber, H. A. & Mellon, E. F. Analyt. Biochem. 66, 78–86 (1975).

    Article  CAS  Google Scholar 

  10. Udenfriend, S., Clark, C. T., Axelrod, J. & Brodie, B. B. J. biol. Chem. 208, 731–739 (1954).

    CAS  PubMed  Google Scholar 

  11. Breslow, R. & Lukens, L. N. J. biol. Chem. 235, 292–296 (1960).

    CAS  PubMed  Google Scholar 

  12. Hayaishi, O. & Asada, K. (eds) Biochemical and Medical Aspects of Active Oxygen (University Park Press, Baltimore, 1977).

  13. Cintron, C., Peczon, B. D. & Kublin, C. L. Analyt. Biochem. 87, 622–630 (1978).

    Article  CAS  Google Scholar 

  14. Villanueva, V. R. & Lederer, E. FEES Lett. 52, 308–311 (1975).

    Article  CAS  Google Scholar 

  15. Kivirikko, K. I. Int. Rev. Connective Tissue Res. 5, 93–163 (1970).

    Article  CAS  Google Scholar 

  16. Dziewiatkowski, D. D., Hascall, V. C. & Riolo, R. L. Analyt. Biochem. 49, 550–558 (1972).

    Article  CAS  Google Scholar 

  17. Mauger, A. B. & Witkop, B. Chem. Rev. 66, 47–86 (1966).

    Article  CAS  Google Scholar 

  18. Irreverre, F. & Witkop, B. J. Chromat. 43, 127–128 (1969).

    Article  CAS  Google Scholar 

  19. Michelson, A. M., McCord, J. M. & Fridovich, I. (eds) Superoxide and Superoxide Dismutases (Academic, London, 1977).

  20. Foerder, C. A. & Shapiro, B. M. Proc. natn. Acad. Sci. U.S.A. 74, 4214–4218 (1977).

    Article  ADS  CAS  Google Scholar 

  21. DeVore, D. P. & Gruebel, R. J. Biochem. biophys. Res. Commun. 80, 993–999 (1978).

    Article  CAS  Google Scholar 

  22. Waykole, P. & Heidemann, E. Connective Tissue Res. 4, 219–222 (1976).

    Article  CAS  Google Scholar 

  23. LaBella, F., Keeley, F., Vivian, S. & Thornhill, D. Biochem. biophys. Res. Commun. 26, 748–753 (1967).

    Article  CAS  Google Scholar 

  24. Andersen, S. D. Biochim. biophys. Acta. 93, 213–215 (1964).

    Article  CAS  Google Scholar 

  25. McCord, J. M. Science 185, 529–531 (1974).

    Article  ADS  CAS  Google Scholar 

  26. Petrone, W. F., English, D. K., Wong, K. & McCord, J. M. Proc. natn. Acad. Sci. U.S.A. 77, 1159–1163 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Postlethwaite, A. E., Seyer, J. M. & Kang, A.H. Proc. natn. Acad. Sci. U.S.A. 75, 871–875 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Rosenbloom, J. & Prockop, D. J. J. biol. Chem. 245, 3361–3368 (1970).

    CAS  PubMed  Google Scholar 

  29. Fridovitch, I. Science 201, 875–880 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trelstad, R., Lawley, K. & Holmes, L. Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives. Nature 289, 310–312 (1981). https://doi.org/10.1038/289310a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289310a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing