Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of crystalline actin sheets

Abstract

Although actin is one of the most abundant proteins found in nature, little detailed information about its molecular structure is available beyond the amino acid sequence1,2. Electron microscopy of negatively stained filaments combined with three-dimensional image reconstruction techniques have revealed the overall size and shape of the actin monomer at 25 Å resolution3–5. Higher resolution structural data can be expected from electron microscopy of two-dimensional crystalline arrays6,7 and X-ray diffraction analysis of three-dimensional crystals8–11, but only very preliminary results have been reported so far. The original finding by Dos Remedios and Dickens6 was that skeletal muscle actin forms microcrystals and tubes in the presence of the trivalent lanthanide gadolinium (Gd3+). We have modified and refined their conditions to obtain large crystalline sheets of Acanthamoeba actin and present here a model of the actin monomer in projection to 15 Å resolution. We have found that, depending on the ionic strength used, these sheets occur in three different forms: ‘cylinders’, ‘square type’ sheets and ‘rectangular type’ sheets. These different polymorphic forms are built from the same fundamental two-dimensional crystalline actin lattice, which we call the ‘basic sheet’. The present concerns the structural analysis of these basic sheets; the crystal polymorphism will be discussed in detail elsewhere (U.A. et al., in preparation). Furthermore, in addition to demonstrating that actin is an elongated globular molecule with a pronounced asymmetric shape in and perpendicular to the plane of the sheet, our results indicate that these crystalline actin sheets might be suitable for three-dimensional structure determination by low-dose electron microscopy of unstained specimens12,13 to at least 10 Å resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collins, J. H. & Elzinga, M. J. biol. Chem. 250, 5915–5920 (1975).

    CAS  PubMed  Google Scholar 

  2. Vandekerckhove, J. & Weber, K. Nature 276, 720–721 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Moore, P. B., Huxley, H. E. & DeRosier, D. J. J. molec. Biol. 50, 279–295 (1970).

    Article  CAS  Google Scholar 

  4. Spudich, J. A., Huxley, H. E. & Finch, J. T. J. molec. Biol. 72, 619–632 (1972).

    Article  CAS  Google Scholar 

  5. Wakabayashi, T., Huxley, H. E., Amos, L. A. & Klug, A. J. molec. Biol. 93, 477–497 (1975).

    Article  CAS  Google Scholar 

  6. Dos Remedios, C. G. & Dickens, M. J. Nature 276, 731–733 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Dickens, M. J. Proc. R. microsc. Soc. 13, 80–81 (1978).

    Google Scholar 

  8. Carlsson, L. et al. J. molec. Biol. 105, 353–366 (1976).

    Article  CAS  Google Scholar 

  9. Mannherz, H. G., Kabsch, W. & Leberman, R. FEBS Lett. 73, 141–143 (1977).

    Article  CAS  Google Scholar 

  10. Oriol, C., Dubord, C. & Landon, F. FEBS Lett. 73, 89–91 (1977).

    Article  CAS  Google Scholar 

  11. Sugino, H. et al. J. Biochem. 86, 257–260 (1979).

    CAS  PubMed  Google Scholar 

  12. Unwin, P. N. T. & Henderson, R. J. molec. Biol. 74, 425–440 (1975).

    Article  Google Scholar 

  13. Henderson, R. & Unwin, P. N. T. Nature 257, 28–32 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Kistler, J., Aebi, U. & Kellenberger, E. J. ultrastruct. Res. 59, 76–86 (1977).

    Article  CAS  Google Scholar 

  15. Smith, P. R. J. ultrastruct. Res. 72, 380–384 (1980).

    Article  CAS  Google Scholar 

  16. Pollard, T. D., Stafford, W. F. & Porter, M. E. J. biol. Chem. 253, 4798–4808 (1978).

    CAS  PubMed  Google Scholar 

  17. Gordon, D. J., Eisenberg, E. & Korn, E. D. J. biol. Chem. 251, 4778–4786 (1976).

    CAS  PubMed  Google Scholar 

  18. Williams, R. C. & Fisher, H. W. J. molec. Biol. 52, 121–123 (1970).

    Article  CAS  Google Scholar 

  19. Aebi, U., Smith, P. R., Dubochet, J., Henry, C. & Kellenberger, E. J. supramolec. Struct. 1, 498–522 (1973).

    Article  CAS  Google Scholar 

  20. Smith, P. R. Ultramicroscopy 3, 153–160 (1978).

    Article  CAS  Google Scholar 

  21. Aebi, U. et al. J. molec. Biol. 130, 255–272 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aebi, U., Smith, P., Isenberg, G. et al. Structure of crystalline actin sheets. Nature 288, 296–298 (1980). https://doi.org/10.1038/288296a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288296a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing