Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vitro suppression of UGA codons in a mitochondrial mRNA

Abstract

Although both prokaryotic and eukaryotic messenger RNAs can be easily translated in heterologous protein-synthesizing systems, attempts to achieve correct synthesis of mitochondrial proteins by translation of mitochondrial mRN As in such systems have failed1–3. In general, the products of synthesis are of low molecular weight and presumably represent fragments of mitochondrial proteins1,2. These fragments display a strong tendency to aggregate4. Explanations have included the use by mitochondria of codons requiring a specialized tRNA population5 and the fortuitous occurrence within genes of purine-rich sequences resembling bacterial ribosome binding sites6. In addition, the long 5′-leader sequences present in many mitochondrial (mt) RNAs may also contribute to difficulties in mRNA recognition by heterologous ribosomes7. Recent sequence analysis of human mtDNA8 suggests that the genetic code used by mammalian mitochondria deviates in a number of respects from the ‘universal’ code, the most striking of these being the use of the UGA termination codon to specify tryptophan. That this may also apply in yeast mitochondria has been shown by Fox9 and Macino et al.10, thus providing an obvious and easily testable explanation for the inability of heterologous systems to synthesize full-length mitochondrial proteins. We confirm this explanation and describe here the in vitro synthesis of a full-length subunit II of yeast cytochrome c oxidase in a wheat-germ extract supplemented with a partially purified mitochondrial mRNA for this protein and a UGA-suppressor tRNA from Schizosaccharomyces pombe11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moorman, A. F. M., Verkley, F. M., Asselbergs, F. A. M. & Grivell, L. A. in Mitochondria 1977: Genetics and Biogenesis of Mitochondria (eds Bandlow, W., Schweyen, R. J., Wolf, K. & Kaudewitz, F.) 385–400 (De Gruyter, Berlin, 1977).

    Google Scholar 

  2. Moorman, A. F. M., Van Ommen, G. J. B. & Grivell, L. A. Molec. gen. Genet. 160, 13–24 (1978).

    Article  CAS  Google Scholar 

  3. Chang, A. C. Y., Lansman, R. A., Clayton, D. A. & Cohen, S. N. Cell 6, 231–244 (1975).

    Article  CAS  Google Scholar 

  4. Moorman, A. F. M., Grivell, L. A., Lamie, F. & Smits, H. L. Biochim. biophys. Acta 518, 351–365 (1978).

    Article  CAS  Google Scholar 

  5. Borst, P. & Grivell, L. A. Cell 15, 705–723 (1978).

    Article  CAS  Google Scholar 

  6. Hensgens, L. A. M., Grivell, L. A., Borst, P. & Bos, J. L. Proc. natn. Acad. Sci. U.S.A. 76, 1663–1667 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Van Ommen, G. J. B., Groot, G. S. P. & Grivell, L. A. Cell 18, 511–523 (1979).

    Article  CAS  Google Scholar 

  8. Barrell, B. G., Bankier, A. T. & Drouin, J. Nature 282, 189–194 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Fox, T. D. Proc. natn. Acad. Sci. U.S.A. 76, 6534–6538 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Macino, G., Coruzzi, G., Nobrega, F. G., Li, M. & Tzagoloff, A. Proc. natn. Acad. Sci. U.S.A. 76, 3784–3785 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Kohli, J., Kwong, T., Altruda, F., Söll, D. & Wahl, G. J. biol. Chem. 254, 1546–1551 (1979).

    CAS  PubMed  Google Scholar 

  12. Cabral, F. et al. J. biol. Chem. 253, 297–304 (1978).

    CAS  PubMed  Google Scholar 

  13. Sevarino, K. A. & Poyton, R. O. Proc. natn. Acad. Sci. U.S.A. 77, 142–146 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Steffens, G. J. & Buse, G., Hoppe-Seyler's, Z. physiol. chem. 360, 613–619 (1979).

    CAS  Google Scholar 

  15. Groot, G. S. P., Van Harten-Loosbroek, N. & Kreike, J. Biochim. biophys. Acta 517, 457–463 (1978).

    Article  CAS  Google Scholar 

  16. Marcu, K. & Dudock, B. Nucleic. Acids Res. 1, 1385–1397 (1974).

    Article  CAS  Google Scholar 

  17. Maccecchini, M.-L., Rudin, Y., Blobel, G. & Schatz, G. Proc. natn. Acad. Sci. U.S.A. 76, 343–247 (1979).

    Article  Google Scholar 

  18. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Côté, C., Solioz, M. & Schatz, G. J. biol. Chem. 254, 1437–1439 (1979).

    PubMed  Google Scholar 

  20. Kreike, J. et al. Eur. J. Biochem. 101, 607–617 (1979).

    Article  CAS  Google Scholar 

  21. Chamberlain, J. P. Analyt. Biochem. 98, 132–135 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ronde, A., Van Loon, A., Grivell, L. et al. In vitro suppression of UGA codons in a mitochondrial mRNA. Nature 287, 361–363 (1980). https://doi.org/10.1038/287361a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287361a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing