Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rescue of a splicing defective mutant by insertion of an heterologous intron

Abstract

It is now widely accepted that the primary transcripts of many eukaryotic genes contain intervening sequences (introns)1–3. These introns, which vary considerably in length, have been found in both coding and noncoding regions4–15. They are removed from the primary transcript in one or more steps by a process called RNA splicing16. The role of RNA splicing, the size and position of introns and the signals which modulate the splicing process are under intense investigation. These studies have been greatly facilitated by the use of viral mutants or viral–eukaryotic recombinant molecules. The SV40 system has been of particular value in elucidating certain genetic elements which are critically involved in the splicing process17–21. Further insight into the biological significance of the splicing process has come from a mutant from which precisely one intron has been removed (intron-minus mutant, dl-2350). This deletion mutant has the potential to circumvent the need for splicing. However, the inability of dl-2350 to accumulate late viral transcripts indicates that splicing is a requirement for the biogenesis of stable mRNA22. This finding is supported by studies using the mouse βmaj globin gene inserted into SV40. The inserted portions contained either the complete globin gene23 or a segment encompassing the intron plus the entire 3′ end of the gene24. As polyadenylation is known to precede splicing2,3, the possibility exists that every transcript possesses sequences near the 3′ end that are directly involved in the splicing process. We report here that, to test this possibility as well as to pursue the question of whether the splicing event and/or defined sequences in the intron are required for the biogenesis of mRNAs, we inserted an isolated intron lacking its own genomic 5′ and 3′ ends into the intron-minus mutant previously described. The experimental protocol provided for obtaining both possible orientations of the insert relative to the late genomic region. Investigation of the transcriptional products indicated that stable mRNA was produced only by the mutant containing the intron in the sense orientation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tilghman, S. M., Curtis, P. J., Tiemeier, D. C., Leder, P. & Weissmann, C. Proc. natn Acad. Sci U.S.A. 75, 1309–1313 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Lai, C. J., Dhar, R. & Khoury, G. Cell 14, 971–982 (1978).

    Article  CAS  Google Scholar 

  3. Blanchard, J. M., Weber, J., Jelinek, W. & Darnell, J. E. Proc. natn. Acad. Sci. U.S A. 75, 5344–5348 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Lindenmaier, W. et al. Proc. natn. Acad. Sci. U.S.A. 76, 6196–6200 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Cordell, B. et al. Cell 18, 533–543 (1979).

    Article  CAS  Google Scholar 

  6. Dugaiczyk, A. et al. Proc. natn. Acad. Sci. U.S.A. 76, 2253–2257 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Lomedico, P. et al. Cell 18, 545–558 (1979).

    Article  CAS  Google Scholar 

  8. Busslinger, P., Portman, R. & Birnstiel, M. Nucleic Acids Res. 6, 2997–3008 (1979).

    Article  CAS  Google Scholar 

  9. Cochet, M. et al. Nature 282, 567–574 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Van Ooyen, A., Vanden Berg, J., Mantei, N. & Weissmann, C. Science 206, 337–344 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Gannon, F. et al. Nature 278, 428–434 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Lai, E. C. et al. Cell 18, 829–842 (1979).

    Article  CAS  Google Scholar 

  13. Tiemeier, D. C. et al. Cell 14, 237–245 (1978).

    Article  CAS  Google Scholar 

  14. Leder, A. et al. Proc. natn. Acad. Sci. U.S.A. 75, 6185–6191 (1978).

    Article  ADS  Google Scholar 

  15. Tilghman, S. et al. Proc. natn. Acad. Sci. U.S.A. 74, 4406–4410 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Berger, S. M., Moore, C. & Sharp, P. C. Proc. natn. Acad. Sci. U.S.A. 74, 3171–3175 (1977).

    Article  ADS  Google Scholar 

  17. Lai, C.-J. & Khoury, G. Proc. natn. Acad. Sci. U.S.A. 76, 71–75 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Khoury, G., Gruss, P., Dhar, R. & Lai, C. J. Cell 18, 85–92 (1979).

    Article  CAS  Google Scholar 

  19. Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, D. Proc. natn. Acad. Sci. U.S.A. 75, 4853–5847 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Seif, L., Khoury, G. & Dhar, R. Nucleic Acids Res. 6, 3387–3398 (1979).

    Article  CAS  Google Scholar 

  21. Benoist, C., O'Hare, K., Breathnach, R. & Chambon, P. Nucleic Acids Res. 8, 127–142 (1980).

    Article  CAS  Google Scholar 

  22. Gruss, P., Lai, C.-J., Dhar, R. & Khoury, G. Proc. natn. Acad. Sci. U.S.A. 76, 4317–4321 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Hamer, D. H. & Leder, P. Cell 18, 1299–1302 (1979).

    Article  CAS  Google Scholar 

  24. Hamer, D. H. & Leder, P. Nature 281, 35–40 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Konkel, D. A., Tilghman, S. M. & Leder, P. Cell 15, 1125–1132 (1978).

    Article  CAS  Google Scholar 

  26. Ghosh, P. K. et al. J. biol. Chem. 253, 3643–3647 (1978).

    CAS  Google Scholar 

  27. Maniatis, T. et al. Cell, 15, 687–701 (1978).

    Article  CAS  Google Scholar 

  28. McCutchon, J. H. & Pagano, J. S. J. natn. Cancer Inst. 41, 351–357 (1968).

    Google Scholar 

  29. Lai, C. -J. & Nathans, D. Virology 60, 466–475 (1974).

    Article  CAS  Google Scholar 

  30. Tegtmeyer, P. & Ozer, H. L. J. Virol. 8, 516–524 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  32. Reddy, V. B. et al. Science 200, 494–502 (1978).

    Article  ADS  CAS  Google Scholar 

  33. Fiers, W. et al. Nature 273, 113–120 (1978).

    Article  ADS  CAS  Google Scholar 

  34. Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).

    Article  ADS  CAS  Google Scholar 

  35. Murray, V. & Holliday, R. FEBS Lett. 106, 5–7 (1979).

    Article  CAS  Google Scholar 

  36. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. & Steitz, J. A. Nature 283, 220–224 (1980).

    Article  ADS  CAS  Google Scholar 

  37. Kozak, M. Cell, 15, 1109–1123 (1978).

    Article  CAS  Google Scholar 

  38. Brockman, W. W. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 71, 942–946 (1974).

    Article  ADS  CAS  Google Scholar 

  39. Penman, S. J. molec. Biol. 17, 117–130 (1966).

    Article  CAS  Google Scholar 

  40. Schaffner, W., Kunz Daetwyler, H., Telford, J., Smith, H. O. & Birnstiel, M. L. Cell 14, 655–671 (1978).

    Article  CAS  Google Scholar 

  41. Aleström, P., Akusjärvi, G., Perricaudet, M., Mathews, M. B., Klessign, D. F. & Pettersson, U. Cell 19, 671–681 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruss, P., Khoury, G. Rescue of a splicing defective mutant by insertion of an heterologous intron. Nature 286, 634–637 (1980). https://doi.org/10.1038/286634a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286634a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing