Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dopaminergic activation of reticulata neurones in the substantia nigra

Abstract

Dendritic release of dopamine (DA) in substantia nigra (SN) is well established in various experimental situations1–3 Morphological substrates for DA storage exist in dendrites4,5, as do dendro-dendritic6 and dendro-axonic7 contacts. DA receptors in SN are located on both cells8 and striato-nigral terminals9,10. DA is thought to regulate the activity of neighbouring dopaminergic neurones through its dendritic release by a local feedback mechanism11,12. However, dendrites of DA neurones also ramify close to the neuropil of non-dopaminergic reticulata neurones in SN. The question has arisen whether dendritically released DA might also influence these neurones which, to a large extent, project to ventromedial thalamus (VM) and superior colliculus13. A necessary condition would be that they are sensitive to DA. In the experiments reported here this was found to be the case—a considerable proportion of nigrothalamic neurones were activated by iontophoretically applied DA. This contrasts with its known depressant effect on pars compacta DA neurones 12 which we confirmed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Korf, J., Zieleman, M. & Westerink, B. H. C. Nature 260, 257–258 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Geffen, L. B., Jessell, T. M., Cuello, A. C. & Iversen, L. L. Nature 260, 258–260 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Nieoullon, A., Cheramy, A. & Glowinski, J. Nature 266, 375–377 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Björklund, A. & Lindvall, O. Brain Res. 83, 531–537 (1975).

    Article  Google Scholar 

  5. Hefti, F. & Lichtensteiger, W. J. Neurochem. 30, 1217–1230 (1978).

    Article  CAS  Google Scholar 

  6. Wilson, C. J., Groves, P. M. & Fifkov´, E. Exp Brain Res. 30, 161–174 (1977).

    CAS  PubMed  Google Scholar 

  7. Reubi, J. C. & Sandri, C. Neurosci. Lett. 13, 183–188 (1979).

    Article  CAS  Google Scholar 

  8. Nagy, J. I., Lee, T., Seemann, P. & Fibiger, H. C. Nature 274, 278–281 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Gale, K., Guidotti, A. & Costa, E. Science 195, 503–505 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Spano, P. F., Trabucchi, M. & DiChiara, G. Science 196, 1343–1345 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Groves, P. M., Wilson, C. J., Young, S. J. & Rebec, G. V. Science 190, 522–529 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Aghajanian, G. K. & Bunney, B. S. Naunyn. Schmiedebergs Arch. Pharmac. 297, 1–7 (1977).

    Article  CAS  Google Scholar 

  13. Deniau, J. M., Hammond, C., Riszk, A. & Feger, J. Exp Brain Res. 32, 409–422 (1978).

    Article  CAS  Google Scholar 

  14. Bunney, B. S., Walters, J. R., Roth, R. H. & Aghajanian, G. K. J. Pharmac. exp. Ther. 185, 560–571 (1973).

    CAS  Google Scholar 

  15. Iversen, L. L., Horn, A. S. & Miller, R. J. in Pre- and Postsynaptic Receptors (eds Usdin, E. & Bunney, W. E.) 207–243 (Dekker, New York, 1975).

    Google Scholar 

  16. Crossman, A. R., Walker, R. J. & Woodruff, G. N. Neuropharmacology 13, 547–552 (1974).

    Article  CAS  Google Scholar 

  17. Tamura, Y. & Maruyama, S. J. Neurosci. Meth. 1, 249–252 (1979).

    Article  CAS  Google Scholar 

  18. Bloom, F. E., Costa, E. & Salmoriaghi, G. C. J. Pharmac. exp. Ther. 150, 244–252 (1965).

    CAS  Google Scholar 

  19. Bernardi, G., Marciani, M. G., Morocutti, C., Pavone, F. & Stanzione, P. Neurosci. Lett 8, 235–240 (1978).

    Article  CAS  Google Scholar 

  20. Dray, A., Gonye, T. J., Oakley, N. R. & Tanner, T. Brain Res. 113, 45–57 (1976).

    Article  CAS  Google Scholar 

  21. Garcia-Munoz, M., Nicolaou, N. M., Tulloch, I. F., Wright, A. K. & Arbuthnott, G. W. Nature 265, 363–365 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Rebec, G. V., Groves, P. M. Neuropharmacology 14, 275–282 (1975).

    Article  CAS  Google Scholar 

  23. Paden, C., Wilson, C. J. & Groves, P. M. Life Sci. 19, 1499–1506 (1976).

    Article  CAS  Google Scholar 

  24. Hefti, F. & Lichtensteiger, W. Neurosci. Lett. 10, 65–70 (1978).

    Article  CAS  Google Scholar 

  25. Nieoullon, A., Cheramy, A., Leviel, V. & Glowinski, J. Eur. J. Pharmac. 53, 289–296 (1979).

    Article  CAS  Google Scholar 

  26. Herkenham, M. J. comp. Neurol. 183, 487–518 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruffieux, A., Schultz, W. Dopaminergic activation of reticulata neurones in the substantia nigra. Nature 285, 240–241 (1980). https://doi.org/10.1038/285240a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/285240a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing