Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean

Abstract

In steady state, the export of photosynthetically fixed organic matter to the deep ocean has to be balanced by an upward flux of nutrients into the euphotic zone1. Indirect geochemical estimates2 of the nutrient supply to surface waters have been substantially higher than direct biological and physical measurements3, particularly in subtropical regions. A possible explanation for the apparent discrepancy is that the sampling strategy of the direct measurements has under-represented episodic nutrient injections forced by mesoscale eddy dynamics, whereas geochemical tracer budgets integrate fluxes over longer time and space scales. Here we investigate the eddy-induced nutrient supply by combining two methods potentially capable of delivering synoptic descriptions of the ocean's state on a basin scale. Remotely sensed sea-surface height data from the simultaneous TOPEX/Poseidon and ERS-1 satellite missions are assimilated into a numerical eddy-resolving coupled ecosystem–circulation model of the North Atlantic Ocean. Our results indicate that mesoscale eddy activity accounts for about one-third of the total flux of nitrate into the euphotic zone (taken to represent new production) in the subtropics and at mid-latitudes. This contribution is not sufficient to maintain the observed primary production in parts of the subtropical gyre, where alternative routes of nitrogen supply will have to be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results from the assimilation experiment A.
Figure 2: Meridional section, averaged from 50° to 30° W.

Similar content being viewed by others

References

  1. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  2. Jenkins, W. J. Nitrate flux into the euphotic zone near Bermuda. Nature 331, 521–523 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Lewis, M. R., Harrison, W. G., Oakey, N. S., Herbert, D. & Platt, T. Vertical nitrate fluxes in the oligotrophic ocean. Science 234, 870–873 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Dugdale, R. C. & Goering, J. J. Uptake of new and regenerated forms of nitrogen in marine production. Limnol. Oceanogr. 12, 196–206 (1967).

    Article  ADS  CAS  Google Scholar 

  5. Falkowski, P. G., Ziemann, D., Kolber, Z. & Bienfang, P. K. Role of eddy pumping in enhancing primary production in the ocean. Nature 352, 55–58 (1991).

    Article  ADS  Google Scholar 

  6. McGillicuddy, D. J. J & Robinson, A. R. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep–Sea Res. I 44, 1427–1450 (1997).

    Article  CAS  Google Scholar 

  7. Dadou, I., Garçon, V., Andersen, V., Flierl, G. R. & Davis, C. S. Impact of the North Equatorial Current meandering on a pelagic ecosystem: A modeling approach. J. Mar. Res. 54, 311–342 (1996).

    Article  Google Scholar 

  8. Williams, R. G. & Follows, M. J. The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep-Sea Res. I. 45, 461–489 (1998).

    Article  CAS  Google Scholar 

  9. Oschlies, A. & Garçon, V. An eddy-resolving coupled physical-biological model of the North Atlantic. Part I: Sensitivity to advection numerics and mixed layer physics. Glob. Biogeochem. Cycles(submitted).

  10. Bryan, F. O. & Holland, W. R. in Parameterization of Small-Scale Processes(eds Müller, P. & Henderson, D.) 99–115 (Proc. 'Aha Huliko'a, Hawaiian Winter Workshop, Spec. Publ., Hawaii Inst. Geophys, Manoa, (1989)).

    Google Scholar 

  11. Döscher, R., Böning, C. W. & Herrmann, P. Response of circulation and heat transport in the North Atlantic to changes in thermohaline forcing in northern latitudes: a model study. J. Phys. Oceanogr. 24, 2306–2320 (1994).

    Article  ADS  Google Scholar 

  12. Blanke, B. & Delecluse, P. Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr. 23, 1363–1388 (1993).

    Article  ADS  Google Scholar 

  13. Paulson, C. A. & Simpson, J. J. Irradiance measurements in the upper ocean. J. Phys. Oceanogr. 7, 952–956 (1977).

    Article  ADS  Google Scholar 

  14. Levitus, S., Conkright, M. E., Reid, J. L., Najjar, R. G. & Mantyla, A. Distribution of nitrate, phosphate and silicate in the world oceans. Prog. Oceanogr. 31, 245–273 (1993).

    Article  ADS  Google Scholar 

  15. Lafore, J.-P. et al. The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophysicae 16, 90–109 (1998).

    Article  ADS  Google Scholar 

  16. Stammer, D. & Böning, C. W. Mesoscale variability in the Atlantic Ocean from GEOSAT Altimetry and WOCE high resolution numerical modeling. J. Phys. Oceanogr. 22, 732–752 (1992).

    Article  ADS  Google Scholar 

  17. Le Traon, P. Y., Gaspar, P., Bouyssel, F. & Makhmara, H. Using TOPEX/POSEIDON data to enhance ERS-1 data. J. Atmos. Ocean. Technol. 12, 161–170 (1995).

    Article  ADS  Google Scholar 

  18. Oschlies, A. & Willebrand, J. Assimilation of Geosat altimeter data into an eddy-resolving primitive equation model of the North Atlantic Ocean. J. Geophys. Res. 101(C6), 14175–14190 (1996).

    Article  ADS  Google Scholar 

  19. Sarmiento, J. L. et al. Aseasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Glob. Biogeochem. Cycles 7, 417–450 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Berger, W. H. in Productivity of the Ocean: Present and Past(eds Berger, W. H., Smetaceck, V. S. & Wefer, G.) 429–455 (Wiley, Chichester, (1989)).

    Google Scholar 

  21. Antoine, D., André, J.-M. & Morel, A. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob. Biogeochem. Cycles 10, 57–69 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Sathyendranath, S., Longhurst, A., Caverhill, C. M. & Platt, T. Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Res. I 42, 1773–1802 (1995).

    Article  Google Scholar 

  23. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Platt, T. & Harrison, W. G. Biogenic fluxes of carbon and oxygen in the ocean. Nature 318, 55–58 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Archer, D., Pelzer, E. T. & Kirchman, D. L. Atimescale for dissolved organic carbon production in equatorial Pacific surface waters. Glob. Biogeochem. Cycles 11, 435–452 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Sambrotto, R. N. et al. Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363, 248–250 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. F. Minster for discussions, and W. Koeve and G. Evans for comments. This work was supported through the European Union ESCOBA program and the German JGOFS project funded by the BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Oschlies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oschlies, A., Garçon, V. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394, 266–269 (1998). https://doi.org/10.1038/28373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28373

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing