Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stable isotope and sea-level data from New Guinea supports Antarctic ice-surge theory of ice ages

Abstract

Two theories of glaciation have received considerable attention, the Milankovitch orbital theory1,2 in which climatic change is ascribed to latitude-dependent variations in solar radiation that accompany changes in the Earth's orbital parameters, and the Antarctic surge hypothesis3–6, in which a large Antarctic ice sheet ‘surges’ into the Southern Ocean thereby increasing the Earth's albedo, and the resultant cooling triggers the growth of ice in the Northern Hemisphere. The interval which encompasses the peaks of the last interglacial maximum at 125 kyr (ref. 7) and its subsequent decline, with cooling of the North Atlantic8 and rapid fall of sea level9,10, presumably also includes the event that triggered the succeeding ice age. The raised coral reefs of Huon Peninsula, Papua New Guinea, contain a particularly good record of the interval 140–105 kyr (ref. 11), from which we present oxygen isotope and sea-level data which seem to require an Antarctic surge at 120 kyr, and which also have a bearing on the role of the Milankovitch factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broecker, W. S. & van Donk, J. Rev. Geophys. Space Phys. 8, 169–198 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 194, 1121–1132 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Wilson, A. T. Nature 201, 147–149 (1964).

    Article  ADS  Google Scholar 

  4. Flohn, H. Quat. Res. 4, 385–404 (1974).

    Google Scholar 

  5. Mercer, J. H. Int. Ass. Sci. Hydrol. Publ. 79, 217–225 (1968).

    Google Scholar 

  6. Mercer, J. H. Nature 271, 321–325 (1978).

    Article  ADS  Google Scholar 

  7. Shackleton, N. J. & Matthews, R. K. Nature 268, 618–620 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Sancetta, C., Imbrie, J., Kipp, N. G., McIntyre, A. & Ruddiman, W. F. Quat. Res. 2, 363–367 (1972).

    Article  Google Scholar 

  9. Chappell, J. & Veeh, H. H. Bull. geol. Soc. Am. 89, 356–368 (1978).

    Article  CAS  Google Scholar 

  10. Chappell, J. & Thom, B. G. Nature 272, 809–810 (1978).

    Article  ADS  Google Scholar 

  11. Chappell, J. Bull. geol. Soc. Am. 85, 553–570 (1974).

    Article  Google Scholar 

  12. Veeh, H. H. & Chappell, J. Science 167, 862–865 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Bloom, A. L., Broecker, W. S., Chappell, J. M. A., Matthews, R. K. & Mesolella, K. J. Quat. Res. 4, 185–205 (1974).

    Article  CAS  Google Scholar 

  14. Ku, R. L., Kimmel, M. A., Easton, W. H. & O'Neil, T. J. Science 183, 959–962 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Mesolella, K. J., Matthews, R. K., Broecker, W. S. & Thurber, D. L. J. Geol. 77, 250–274 (1969).

    Article  ADS  CAS  Google Scholar 

  16. Chappell, J. & Polach, H. A. Bull. geol. Soc. Am. 87, 235–240 (1976).

    Article  CAS  Google Scholar 

  17. Chappell, J. & Polach, H. A. Quat. Res. 2, 244–252 (1972).

    Article  CAS  Google Scholar 

  18. Weber, J. N. & Woodhead, P. M. J. Chem. Geol. 6, 93–117 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Land, L. S., Lang, J. C. & Barnes, D. J. Mar. Biol. 33, 221–233 (1975).

    Article  CAS  Google Scholar 

  20. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Bull. geol. Soc. Am. 64, 1315–1326 (1953).

    Article  CAS  Google Scholar 

  21. Friedman, I. & O'Neil, J. R. Prof. Pap. U.S. geol. Surv. 440-KK (1977).

  22. Aharon, P. thesis, Australian National Univ. (in preparation).

  23. Weber, J. N., Deines, P., Weber, P. H. & Baker, P. A. Geochim. cosmochim. Acta 40, 31–39 (1976).

    Article  ADS  CAS  Google Scholar 

  24. McCrea, J. M. J. Chem. Phys. 18, 849–847 (1950).

    Article  ADS  Google Scholar 

  25. Aharon, P., Compston, W. & Coles, J. N. A.N.Z.S.M.S. 5th Conf. 24 (1978).

  26. Mook, W. G. & Vogel, J. C. Science 159, 874–875 (1968).

    Article  ADS  CAS  Google Scholar 

  27. Emrich, K., Ehhalt, D. H. & Vogel, J. C. Earth planet. Sci. Lett. 8, 363–371 (1970).

    Article  ADS  CAS  Google Scholar 

  28. Shackleton, N. J. & Opdyke, N. D. Quat. Res. 3, 39–55 (1973).

    Article  CAS  Google Scholar 

  29. Chappell, J. in Climatic Change and Variability—A Southern Perspective (eds Pittock, A. B., Frakes, L. A., Jenssen, D., Petersen, J. A. & Zillman, J.) 211–225 (Cambridge University Press, 1978).

    Google Scholar 

  30. Berger, A. L. Quat. Res. 9, 139–167 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharon, P., Chappell, J. & Compston, W. Stable isotope and sea-level data from New Guinea supports Antarctic ice-surge theory of ice ages. Nature 283, 649–651 (1980). https://doi.org/10.1038/283649a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283649a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing