Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Test of the inverse Compton model for Cygnus X-1

Abstract

The X-ray spectrum of Cygnus X-1 from 1 keV to 200 keV exhibits two distinct components. The spectrum below 10 keV is soft and may be the tail of comptonised black body if the turnover at 1 keV is real, while that above 10 keV is a simple power law1,2. The spectra above 200 keV remain uncertain with some showing a cutoff but others a continuation of the power law3. The power law hard spectrum is thought to be the result of unsaturated Compton up-scattering of soft photons by hot thermal electrons4. The comptonisation region may be the optically thin inner part of the disk or spherical accretion flow near the black hole or a hot corona surrounding a thin disk1. The unsaturated Compton model is attractive as it accounts for the power law spectrum with index α 1 (Iv vα) and the alleged high electron temperature (Te >109K). However, there are still questions about the origin of the soft photon supply and stability. As important conclusions are drawn from this model (for example, interpretation of the high energy cutoff as a measure of the electron temperature and α as a measure of the Komponeet parameter y ≡ (4kTe/mec22es 4/(3α + α2), τes ≡ electron scattering depth)4,5, it is crucial to have independent verification of this idea. We propose here a more critical test and show that the hard X-ray data available to date strongly support this model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eardley, D. M., Lightman, A. P., Shakura, N. I., Shapiro, S. L. & Sunyaev, R. A. Comments Astrophys. 7, 151 (1978).

    ADS  Google Scholar 

  2. Oda, M. Space Sci. Rev. 20, 757 (1977).

    Article  ADS  Google Scholar 

  3. Mandrou, P., Niel, M., Vedrenne, G., Dupont, A. & Hurley, K. Astrophys. J. 219, 288 (1978).

    Article  ADS  Google Scholar 

  4. Shapiro, S., Lightman, A. P. & Eardley, D. M. Astrophys. J. 204, 187 (1976).

    Article  ADS  Google Scholar 

  5. Sunyaev, R. A. & Titarchuk, L. G. Preprint No. 441 (USSR Space Research Institute, 1979).

  6. Katz, J. I. Astrophys. J. 206, 910 (1976).

    Article  ADS  Google Scholar 

  7. Heise, J. et al. Nature 256, 107 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Dolan, J. F., Crannell, C. J., Dennis, B. R., Frost, K. J. & Orwig, L. E. Astrophys. J. 230, 551 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Liang, E. P. T. & Thompson, K. A. Astrophys. J. Lett. (submitted).

  10. Tananbaum, H., Gursky, H., Kellogg, E., Giaconni, R. & Jones, C. Astrophys. J. Lett. 177, L5 (1972).

    Article  ADS  Google Scholar 

  11. Sandford, P. W., Ives, J. C., Bell-Burnell, S. J., Mason, K. O. & Murdin, P. Nature 261, 213 (1976).

    Article  Google Scholar 

  12. Coe, M. J., Engel, A. R. & Quenby, J. J. Nature 259, 544 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Holt, S. S., Boldt, E. A., Kaluzienski, L. J. & Serlemitsos, P. J. Nature 256, 108 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Sommer, M., Maura, H. & Urback, R. Nature 263, 752 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Peterson, L. E., Jacobson, A. S., Pelling, R. M. & Schwartz, D. A. Can. J. Phys. 46, S437 (1968).

    Article  ADS  Google Scholar 

  16. Overbeck, J. & Tananbaum, H. Phys. Rev. Lett. 20, 24 (1968).

    Article  ADS  Google Scholar 

  17. Haymes, R. C. & Harnden, F. R. Jr Astrophys. J. 159, 1111 (1970).

    Article  ADS  Google Scholar 

  18. Weber, W. R. & Reinert, C. P. Astrophys. J. 162, 883 (1970).

    Article  ADS  Google Scholar 

  19. Agrawal, P. C. et al. Astrophys. Space. Sci. 18, 408 (1972).

    Article  ADS  Google Scholar 

  20. Rothschild, R. E., Boldt, E. A., Holt, S. S. & Serlemitsos, P. J. Astrophys. J. 213, 818 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Frontera, F. & Fuligni, F. Astrophys. J. 196, 597 (1975).

    Article  ADS  Google Scholar 

  22. Paciesas, W. S. thesis SP78.02, Univ. California, San Diego (1978).

  23. Voges, W. et al. Astr. Astrophys. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, E. Test of the inverse Compton model for Cygnus X-1. Nature 283, 642–644 (1980). https://doi.org/10.1038/283642a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283642a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing