Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

1H NMR study of valinomycin conformation in a phospholipid bilayer

Abstract

Our understanding of how ions pass across biological membranes has been greatly advanced by the study of small molecules which are capable of enhancing ion transport. The concepts of ion movement through channels or via mobile ion carriers have arisen from studies of model systems1–4. However, direct probing at the molecular level of the process of ion movement in a membrane system has proved difficult. The electrical properties of black lipid membrane model systems do not provide information about the details of ionophore location or conformation. Spectroscopic methods which are suited for probing the details of ionophore conformation and the stoichometry of ion binding have been confined largely to organic solvent systems which are limited as models for biological membranes. We report here proton magnetic resonance (1H NMR) spectroscopic studies which investigate valinomycin conformation and ion binding in small bilayer vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mueller, P. & Rudin, D. O. Biochem. biophys. Res. Commun. 26, 398–404 (1967).

    Article  CAS  Google Scholar 

  2. Tosteson, D. C. Fedn Proc. 27, 1269–1277 (1968).

    CAS  Google Scholar 

  3. Eisenman, G., Ciani, S. M. & Szabo, G. Fedn Proc. 27, 1289–1304 (1968).

    CAS  Google Scholar 

  4. Pressman, B. C., Harris, E. J., Jagger, W. S. & Johnson, J. B. Proc. natn. Acad. Sci. U.S.A. 58, 1949–1956 (1967).

    Article  ADS  CAS  Google Scholar 

  5. Ohnishi, M. & Urry, D. W. Biochem. biophys. Res. Commun. 36, 194–202 (1969).

    Article  CAS  Google Scholar 

  6. Ivanov, V. T. et al. Biochem. biophys. Res. Commun. 34, 803–811 (1969).

    Article  CAS  Google Scholar 

  7. Davis, D. G. & Tosteson, D. C. Biochemistry 14, 3962–3969 (1975).

    Article  CAS  Google Scholar 

  8. Bystrov, V. F., Gavrilov, Yu. D., Ivanov, V. T. & Ovchinnikov, Yu. A. Eur. J. Biochem. 78, 63–82 (1977).

    Article  CAS  Google Scholar 

  9. Grell, E. & Funck, T. J. supramolec. Struct. 307–335 (1973).

  10. Pinkerton, M., Steinrauf, L. D. & Dawkins, P. Biochem. biophys. Res. Commun. 35, 512–518 (1969).

    Article  CAS  Google Scholar 

  11. Duax, W. L., Hauptman, H., Weeks, C. M. & Norton, D. A. Science 176, 911–914 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Mayers, D. F. & Urry, D. W. J. Am. Chem. Soc. 94, 77–81 (1972).

    Article  CAS  Google Scholar 

  13. Maigret, B. & Pullman, B. Theoret. chim. Acta 37, 17–36 (1975).

    Article  CAS  Google Scholar 

  14. Kingsley, P. B. & Feigenson, G. W. Chem. Phys. Lipids 24, 135–147 (1979).

    Article  CAS  Google Scholar 

  15. Kingsley, P. B. & Feigenson, G. W. FEBS Lett. 97, 175–178 (1979).

    Article  CAS  Google Scholar 

  16. Patel, D. J. & Tonelli, A. E. Biochemistry 12, 486–496 (1973).

    Article  CAS  Google Scholar 

  17. Feinstein, M. B. & Felsenfeld, H. Proc. natn. Acad. Sci. U.S.A. 68, 2037–2044 (1971).

    Article  ADS  CAS  Google Scholar 

  18. Stark, G., Ketterer, B., Benz, R. & Läuger, P. Biophys. J. 11, 981–994 (1971).

    Article  ADS  CAS  Google Scholar 

  19. Haynes, D. H., Kowalsky, A. & Pressman, B.C. J. biol. Chem. 244, 502–505 (1969).

    CAS  PubMed  Google Scholar 

  20. Ivanov, V. T. et al. in Peptides: Chemistry, Structure, and Biology, 195–201 (eds Walter, R. & Meienhofer, J.) (Ann Arbor, Ann Arbor, 1975).

    Google Scholar 

  21. McLaughlin, S., Bruder, A., Chen, S. & Moser, C. Biochim, biophys. Acta 394, 304–313 (1975).

    Article  CAS  Google Scholar 

  22. Freier, R. D. (ed.) Aqueous Solutions 2, 284 (de Gruyter, Berlin, 1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feigenson, G., Meers, P. 1H NMR study of valinomycin conformation in a phospholipid bilayer. Nature 283, 313–314 (1980). https://doi.org/10.1038/283313a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283313a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing