Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parallel pathways for transduction of chemotactic signals in Escherichia coli

Abstract

Bacteria respond transiently to tactic stimuli1, which indicates that cells adapt to new levels of stimulation. Receptors2,3 send signals to a tumble regulator that controls the balance between directions of flagellar rotation4, creating a pattern of swimming and tumbling that results in taxis5. In Escherichia coli, mutations in tsr and tar affect receptor–regulator linkages, eliminating responses mediated by two different groups of receptors6–9. Sensitivity to most sugars is not reduced by either mutation but observations that tsr–tar double mutants do not respond to spatial gradients of any compound led to the suggestion that the tsr and tar products together provide a necessary final step in transduction from all receptors7,8. Another class of pleiotropic taxis mutations, trg10–13, causes defective transduction from only two receptors, those for galactose and ribose. We were therefore interested in determining whether the trg function represented an early stage of transduction or whether it was analogous to the tsr and tar functions. We have examined the sensitivity of tsr and tar double mutants to temporal gradients, prompted by a report that such gradients of galactose or ribose evoke responses in those strains14. We report here that tsr–tar double mutants were sensitive to stimulation by compounds to which both single mutants respond but were drastically defective in adaptation to these stimuli. We suggest there are at least four parallel, single-component pathways for transduction of tactic signals, from the Tsr, Tar, Trg and enzyme II groups of receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adler, J. A. Rev. Biochem. 44, 341–356 (1975).

    Article  CAS  Google Scholar 

  2. Adler, J. Science 166, 1588–1597 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Hazelbauer, G. L. & Parkinson, J. S. in Microbial Interactions (ed. Reissig, J. L.) 61–98 (Chapman & Hall, London, 1977).

    Google Scholar 

  4. Larsen, S. H., Reader, R. W., Kort, E. M., Tso, W. W. & Adler, J. Nature 249, 74–77 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Berg, H. C. & Brown, D. A. Nature 239, 500–504 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Mesibov, R. & Adler, J. J. Bact. 112, 315–326 (1972).

    CAS  PubMed  Google Scholar 

  7. Springer, M. S., Goy, M. F. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 74, 3312–3316 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Silverman, M. & Simon, M. Proc. natn. Acad. Sci. U.S.A. 74, 3317–3321 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Reader, R. W., Tso, W. -W., Springer, M. S., Goy, M. F. & Adler, J. J. gen. Microbiol. 111, 363–374 (1979).

    Article  CAS  Google Scholar 

  10. Ordal, G. W. & Adler, J. J. Bact. 117, 517–526 (1974).

    CAS  PubMed  Google Scholar 

  11. Hazelbauer, G. L. & Harayama, S. Cell 16, 617–625 (1979).

    Article  CAS  Google Scholar 

  12. Harayama, S., Palva, E. T. & Hazelbauer, G. L. Molec. gen. Genet. 171, 193–203 (1979).

    Article  CAS  Google Scholar 

  13. Kondoh, H., Ball, C. B. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 76, 260–264 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Goy, M. F. & Springer, M. S. in Taxis and Behavior (ed. Hazelbauer, G. L.) 3–34 (Chapman & Hall, London, 1978).

    Google Scholar 

  15. Adler, J. & Epstein, W. Proc. natn. Acad. Sci. U.S.A. 71, 2895–2899 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Ordal, G. W. & Adler, J. J. Bact. 117, 509–516 (1974).

    CAS  PubMed  Google Scholar 

  17. Springer, M. S., Goy, M. F. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 74, 183–187 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Parkinson, J. S. & Revello, P. T. Cell 15, 1221–1230 (1978).

    Article  CAS  Google Scholar 

  19. Goy, M. F., Springer, M. S. & Adler, J. Cell 15, 1231–1240 (1978).

    Article  CAS  Google Scholar 

  20. Goy, M. F., Springer, M. S. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 74, 4964–4968 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Parkinson, J. S. J. Bact. 135, 45–53 (1978).

    CAS  PubMed  Google Scholar 

  22. Koman, A., Harayama, S. & Hazelbauer, G. L. J. Bact. 138, 739–747 (1979).

    CAS  PubMed  Google Scholar 

  23. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335–341 (1975).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazelbauer, G., Engström, P. Parallel pathways for transduction of chemotactic signals in Escherichia coli. Nature 283, 98–100 (1980). https://doi.org/10.1038/283098a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283098a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing