Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ADP is a potent inhibitor of human platelet plasma membrane adenylate cyclase

Abstract

The potent inducer of platelet aggregation, ADP, inhibits both basal and stimulated cyclic AMP production in intact platelets1,2. However, several attempts have failed to detect an effect of the nucleotide on adenylate cyclase activity in broken cell preparations2,3. This paradox has led to suggestions that ADP may act on unidentified sites before the adenylate cyclase step, such as a nucleoside diphosphate kinase4 and a Ca2+ transport system5,6. It is difficult to demonstrate the effect of physiologically effective concentrations (0.1–5 µM) of ADP on a crude membrane preparation of adenylate cyclase because of the presence of nucleoside phosphohydrolase activities which may degrade either the substrate ATP or the putative effector ADP to products (such as ADP, AMP and adenosine) displaying diverse effects. A substrate regenerating system which converts ADP to ATP obviously provides no solution. The contamination by adenine nucleotides and catecholamines in widely used crude lysate preparations aggravates the problem7–9. Using a purified human platelet plasma membrane preparation, and the non-hydrolysable ATP analogue APP(NH)P as substrate, we have now demonstrated direct inhibition of adenylate cyclase by ADP in the physiologically effective concentration range. The inhibitory effect of ADP is immediate in onset and is equal to that produced by adrenaline; it is shared by ADP-βS (and 2′-deoxy ADP to some extent) but not by AP(CH2)P or other adenine nucleotides. The Ki, for ADP is 0.3 µM and maximal inhibition is observed at 2 µM

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cole, B., Robison, A. & Hartmann, R. C. Ann. N.Y. Acad. sci. 185, 477–487 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Haslam, R. J., Davidson, M. M. L., Davies, T., Lynham, J. A. & McClenaghan, M. D. Adv. cyclic Nucleotide Res. 9, 533–552 (1978).

    CAS  PubMed  Google Scholar 

  3. Salzman, E. W. & Levine, L. J. clin. Invest. 50, 131–141 (1971).

    Article  CAS  Google Scholar 

  4. Mustard, J. F., Packham, M. A., Perry, D. W., Guccione, M. A. & Kinlough-Rathbone, R. L. Ciba Fdn Symp. 35, 47–75 (1975).

    CAS  Google Scholar 

  5. Kazer-Glanzmann, R., Jakabova, M., George, J. N. & Luscher, E. F. Biochim biophys. Acta 466, 429–440 (1977).

    Article  Google Scholar 

  6. Haslam, R. J. Ciba Fdn Symposium 35, 121–151 (1975).

    CAS  Google Scholar 

  7. Lee, G. R., Boggs, D. R., Bithell, T. C., Athens, J. W. & Foerster, J. (eds) Clinical Haematology 7th edn 372–408. (Kimpton, London, 1974).

  8. Jakobs, K. H., Saur, W. & Schultz, G. FEBS Lett. 85, 167–170 (1978).

    Article  CAS  Google Scholar 

  9. Haslam, R. J., Davidson, M. M. L. & Desjardins, J. V. Biochem. J. 176, 83–95 (1978).

    Article  CAS  Google Scholar 

  10. Barber, A. J. & Jamieson, G. A. J. biol. Chem. 245, 6357–6365 (1970).

    CAS  PubMed  Google Scholar 

  11. Salomon, Y., Londos, C. & Rodbell, M. Analyt. Biochem. 58, 541–548 (1974).

    Article  CAS  Google Scholar 

  12. Randerath, K. & Randerath, E. J. Chromatogr. 16, 111–129.

  13. Horak, H. & Barton, P. G. Biochim. biophys. Acta 373, 471–480 (1974).

    Article  CAS  Google Scholar 

  14. Gough, G., Maguire, M. H. & Penglis, F. Molec. Pharmac. 8, 170–177 (1972).

    CAS  Google Scholar 

  15. Myers, T. C., Nakamura, K. & Danielson, A. B. J. org. Chem. 30, 1517–1520 (1965).

    Article  CAS  Google Scholar 

  16. Londos, C., Cooper, D. M. F., Schlegel, W. & Rodbell, M. Proc. natn. Acad. Sci. U.S.A. 75, 5362–5366 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Sabol, S. L. & Nirenberg, M. J. biol. Chem. 254, 1913–1920 (1979).

    CAS  PubMed  Google Scholar 

  18. Born, G. V. R. J. Physiol., Lond. 209, 487–511 (1970).

    Article  CAS  Google Scholar 

  19. Londos, C. & Wolff, J. Proc. natn. Acad. Sci. U.S.A. 74, 5482–5486 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Burnstock, G. in Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides (eds Baer, H. P. & Drummond, G. I.) 3–32 (Raven, New York, 1979).

    Google Scholar 

  21. Lin, M. C., Salomon, Y., Rendell, M. & Rodbell, M. J. biol. Chem. 250, 4246–4252 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, D., Rodbell, M. ADP is a potent inhibitor of human platelet plasma membrane adenylate cyclase. Nature 282, 517–518 (1979). https://doi.org/10.1038/282517a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282517a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing