Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Morphine-induced striatal dopamine efflux depends on the activity of nigrostriatal dopamine neurones

Abstract

It is clear that morphine markedly increases the turnover of dopamine (DA) in the rat striatum1–3, although the nature of this increase remains obscure. The early suggestion, that morphine may block postsynaptic DA receptors in a similar manner to haloperidol4, has since been refuted5,6. The effect of morphine on dopaminergic neurones seems to be presynaptic, but whether it stimulates7,8 or inhibits2,5 the functional activity of the dopaminergic neurones is unclear. We recently reported that morphine seems to have no effect on the functional activity of the nigrostriatal dopaminergic neurones, using the decline in DA after administration of α-methyl-p-tyrosine (αMT) as a measure of DA efflux9,10. However, the substantia nigra and striatum are extremely rich in opiate receptors11,12, and a considerable number of the striatal opiate receptors seem to be localised on dopaminergic nerve endings13; it would therefore be rather surprising if stimulation of these receptors by morphine did not alter the functional activity of the nigrostriatal dopaminergic neurones. To investigate this apparent discrepancy, we analysed the effect of morphine on DA efflux in conditions of altered impulse flow in the nigrostriatal dopaminergic neurones. The present results show that the administration of morphine results in increased efflux of DA from neurones with a lowered firing rate, but not from neurones with a normal or increased firing rate. Thus, morphine may be a modulator of the nigrostriatal dopaminergic neurones in that it counteracts decreasing dopaminergic activity, but has no effect when the activity is normal or increased.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clouet, D. H. & Ratner, M. Science 168, 854–856 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Kuschinsky, K. & Hornykiewicz, O. Eur. J. Pharmac. 19, 119–122 (1972).

    Article  CAS  Google Scholar 

  3. Westerink, B. H. C. & Korf, J. Eur. J. Pharmac. 38, 281–291 (1976).

    Article  CAS  Google Scholar 

  4. Puri, S. K., Reddy, C. & Lal, H. Res. Commun. chem. Path. Pharmac. 5, 389–401 (1973).

    Article  CAS  Google Scholar 

  5. Carenzi, A., Guidotti, A., Revuelta, A. & Costa, E. J. Pharmac. exp. Ther. 194, 311–318 (1975).

    CAS  Google Scholar 

  6. Carenzi, A., Cheney, D. L., Costa, E., Guidotti, A. & Racagni, G. Neuropharmacology 14, 927 (1975).

    Article  CAS  Google Scholar 

  7. Moleman, P., Versluis, D. J. & Bruinvels, J. Psychopharmacologia 60, 35–39 (1978).

    Article  CAS  Google Scholar 

  8. Pert, A. in Characteristics and Function of Opioids (eds Van Ree, J. M. & Terenius, L.) 389–401 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  9. Moleman, P. & Bruinvels, J. Life Sci. 19, 1277–1282 (1976).

    Article  CAS  Google Scholar 

  10. Moleman, P. & Bruinvels, J. Prog. Neuro-Psychopharmac. 1, 101–106 (1977).

    Article  CAS  Google Scholar 

  11. Kuhar, M. J., Pert, C. B. & Snyder, S. H. Nature 245, 447–450 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Snyder, S. H. Nature 257, 185–189 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Pollard, H., Llorens-Cortes, C. & Schwartz, J. C. Nature 268, 745–747 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Gispen, W. H., Schotman, P. & De Kloet, E. R. Neuroendocrinology 9, 285–296 (1972).

    Article  CAS  Google Scholar 

  15. Aghajanian, G. K. & Bunney, B. S. in Frontiers in Catecholamine Research (eds Usdin, E. & Snyder, S. H.) 643–648 (Pergamon, Oxford, 1973).

    Book  Google Scholar 

  16. Doteuchi, M., Wang, G. & Costa, E. Molec. Pharmac. 10, 225–234 (1974).

    CAS  Google Scholar 

  17. Papeschi, R. Psychopharmacology 55, 1–7 (1977).

    Article  CAS  Google Scholar 

  18. DiChiara, G. et al. Adv. biochem. Psychopharmac. 16, 571–575 (1977).

    CAS  Google Scholar 

  19. Lee, C. M., Wong, P. C. L. & Chan, S. H. H. Neuropharmacology 16, 571–576 (1977).

    Article  CAS  Google Scholar 

  20. Ahtee, L., Garcia-Sevilla, J. A., Magnusson, T. & Carlsson, A. in Characteristics and Function of Opioids (eds Van Ree, J. M. & Terenius, L.) 345 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  21. Algeri, S., Calderini, G., Consolazione, A. & Lomuscio, G. in Characteristics and Function of Opioids (eds Van Ree, J. M. & Terenius, L.) 347 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  22. Steel, R. G. D. & Torre, J. H. Principles and Proceedings of Statistics (McGraw-Hill, New York, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moleman, P., Bruinvels, J. Morphine-induced striatal dopamine efflux depends on the activity of nigrostriatal dopamine neurones. Nature 281, 686–687 (1979). https://doi.org/10.1038/281686a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/281686a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing