Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of Panamanian sea urchins to test the molecular clock

A Corrigendum to this article was published on 01 October 1979

Abstract

THE ‘molecular clock’ hypothesis of protein evolution holds that each protein changes at a constant rate, so that the degree of molecular divergence between two species is linearly related to the time for which their lineages have remained separate1. This assertion, however, has been challenged repeatedly by authors who discovered taxa and peptides in which the proposed uniformity of molecular evolution did not hold2,3, who noted that biochemically and palaeontologically determined dates of separation between lineages conflicted4,5, introduced tests that pointed to significant variation in the rates of evolution of the same proteins6,7, or dismissed the hypothesis as a confusion of averages with constants8. Others have postulated that, although the same proteins evolve at different rates in different lineages, the average amount of molecular change over many proteins is sufficiently uniform to provide approximate dates for the splitting of two lines of descent9,10. Here I present evidence from sea urchins separated by the Isthmus of Panama which indicates that even this compromise position is not tenable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilson, A. C., Carlson, S. S. & White, T. J. A. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  Google Scholar 

  2. Goodman, M., Barnabas, J., Matsuda, G. & Moore, G. W. Nature 233, 604–613 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Jukes, T. H. & Holmquist, R. Science 177, 530–532 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Radinsky, L. Science 200, 1182–1183 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Simons, E. L. Ann. N. Y. Acad. Sci. 167, 319–331 (1969).

    Article  ADS  Google Scholar 

  6. Langley, C. H. & Fitch, W. M. J. molec. Evolut. 3, 161–177 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Moore, G. W., Goodman, M., Callahan, C., Holmquist, R. & Moise, H. J. molec. Biol. 105, 15–37 (1976).

    Article  CAS  Google Scholar 

  8. Stebbins, G. L. & Lewontin, R. C. Proc. 6th Berkeley Symp. Math. Stat. Prob. V, 23–42 (1972).

  9. Fitch, W. M. & Langley, C. H. Fedn Proc. 35, 2092–2097 (1976).

    CAS  Google Scholar 

  10. Dobzhansky, T., Ayala, F. J., Stebbins, G. L. & Valentine, J. W. Evolution (Freeman, San Francisco, 1977).

    Google Scholar 

  11. Gorman, G. C., Kim, Y. J. & Rubinoff, R. Copeia 1976, 361–364 (1976).

    Article  Google Scholar 

  12. Maxson, L. R. & Wilson, A. C. Science 185, 66–68 (1975).

    Article  ADS  Google Scholar 

  13. Sarich, V. M. Syst. Zool. 18, 416–422 (1969).

    Article  CAS  Google Scholar 

  14. Sarich, V. M. & Wilson, A. C. Science 158, 1200–1203 (1967).

    Article  ADS  CAS  Google Scholar 

  15. Wilson, A. C. & Sarich, V. M. Proc. natn. Acad. Sci. U.S.A. 63, 1088–1093. (1969).

    Article  ADS  CAS  Google Scholar 

  16. Kimura, M. & Ohta, T. J. J. molec. Evolut. 1, 1–17 (1971); Nature 229, 461–469 (1971); Genetics, Princeton 73, Suppl. 19–35 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Kimura, M. Proc. natn. Acad. Sci. U.S.A. 63, 1181–1188 (1969).

    Article  ADS  CAS  Google Scholar 

  18. King, J. L. & Jukes, T. H. Science 164, 788–798 (1969).

    Article  ADS  CAS  Google Scholar 

  19. Ohta, T. & Kimura, M. J. molec. Evolut. 1, 18–25 (1971).

    Article  ADS  CAS  Google Scholar 

  20. Van Valen, L. J. molec. Evolut. 3, 89–101 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Carlson, S. S., Wilson, A. C. & Maxson, R. D. Science 200, 1183–1185 (1978).

    Article  CAS  Google Scholar 

  22. Richmond, R. C. Nature 225, 1025–1028 (1970).

    Article  ADS  CAS  Google Scholar 

  23. Saito, T. Geology 4, 305–309 (1976).

    Article  ADS  Google Scholar 

  24. Webb, S. D. Paleobiology 2, 220–234 (1976); A. Rev. ecol. Syst. 9, 393–426 (1978).

    Article  Google Scholar 

  25. Woodring, W. P. Proc. Am. Phil. Soc. 110, 425–433 (1966).

    Google Scholar 

  26. Chesher, R. H. Bull. biol. Soc. Wash. 2, 139–158 (1972).

    Google Scholar 

  27. Johnson, G. B. A. Rev. ecol. Syst. 8, 309–328 (1977).

    Article  CAS  Google Scholar 

  28. Nei, M. Molecular Population Genetics and Evolution (North-Holland, Amsterdam, 1975).

    Google Scholar 

  29. Mortensen, T. Studies of the Development and Larval Forms of Echinoderms (Gad, Copenhagen, 1921).

    Book  Google Scholar 

  30. Emiliani, C., Gartner, S. & Lidz, B. Paleogeogr. Paleoclim. Paleoecol. 11, 1–10 (1972).

    Article  ADS  Google Scholar 

  31. Durham, J. W. & Allison, E. C. Syst. Zool. 9, 47–91 (1960).

    Article  Google Scholar 

  32. Fell, H. B. & Pawson, D. L. in Treatise on Invertebrate Paleontology Part U, Vol. 3 (ed. Moore, R. C.) 367–440 (Geological Society of America, Kansas, 1966).

    Google Scholar 

  33. Lovejoy, C. O., Bernstein, A. H. & Heipe, K. G. Science 176, 803–805 (1972).

    Article  ADS  CAS  Google Scholar 

  34. Hendler, G. Proc. 3rd Int. Coral Reef Symp. 1, 217–223 (1977).

    Google Scholar 

  35. Ewens, W. J. Genetics Princeton 50, 891–898 (1964).

    CAS  Google Scholar 

  36. Kimura, M. Genet. Res. 11, 247–269 (1968); Genetics Princeton 61, 893–903 (1969).

    Article  CAS  Google Scholar 

  37. Ohta, T. & Kimura, M. Genet. Res. 22, 201–204 (1973); Am. Nat. 109, 137–145 (1975).

    Article  MathSciNet  CAS  Google Scholar 

  38. Chakraborty, R. & Nei, M. Evolution 31, 347–356 (1977).

    Article  Google Scholar 

  39. Lessios, H. A. thesis, Yale Univ. (1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LESSIOS, H. Use of Panamanian sea urchins to test the molecular clock. Nature 280, 599–601 (1979). https://doi.org/10.1038/280599a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280599a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing