Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidant damage mediates variant red cell resistance to malaria

Abstract

IT is thought that the deleterious properties of thalassaemia (thal) and glucose-6-phosphate dehydrogenase deficiency (G6PD) are balanced in the population by a conferred protection against malaria, and that some characteristic of the variant red cell acts directly to inhibit the invasion or intracellular development of the malaria parasite. Indeed, such is the case for sickle cell disorders1,2. Recently, Pasvol et al.3, having shown that fetal haemoglobin (HbF) (in both fetal and adult cells) inhibits malaria parasite development, have suggested that the slight persistance of HbF in children with thal trait is responsible for the selective advantage of the thal gene. They have reported no difference in parasite development in the red cells of adult carriers of thal. Evidence is presented here that both α- and β-thal trait red cells from adults are refractory to parasite development because of oxidant sensitivity, and, furthermore, that fetal red cells and G6PD cells are refractory for the same reason.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friedman, M. J. Proc. natn. Acad. Sci. U.S.A. 75, 1994–1997 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Pasvol, G., Weatherall, D. J. & Wilson, R. J. M. Nature 274, 701–703 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Pasvol, G., Weatherall, D. J. & Wilson, R. J. M. Nature 270, 171–173 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Etkin, N. & Eaton, J. in Erythrocyte Structure and Function (ed. Brewer, G. J.) 219–232. (Liss, New York, 1975).

    Google Scholar 

  5. Beutler, E. J. Lab. clin. Med. 49, 84–95 (1957).

    CAS  PubMed  Google Scholar 

  6. Stocks, J., Offerman, E. L., Modell, C. B. & Dormandy, T. L. Br. J. Haemat. 23, 713–724 (1972).

    Article  CAS  Google Scholar 

  7. Trager, W. & Jensen, J. B. Science 193, 673–675 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Motulsky, A. G. & Campbell-Kraut, J. M. in Proceedings of the Conference on Genetics, Polymorphism, and Geographic Variations in Disease (ed. Blumberg, B. S.) 159–180 (Grune-Stratton, New York, 1961).

    Google Scholar 

  9. Massey, V., Palmer, G. & Ballou, D. in Flavins and Flavoproteins (ed. Kamin, H.) 349–361 (University Park Press, Baltimore, 1971).

    Google Scholar 

  10. Misra, H. P. & Fridovich, I. J. biol. Chem. 247, 188–192 (1972).

    CAS  PubMed  Google Scholar 

  11. Eckman, J. R. & Eaton, J. W. Nature 278, 754–756 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Tappel, A. L. Vitam. Horm. 20, 493–510 (1962).

    Article  CAS  Google Scholar 

  13. Eaton, J. W., Boraas, M. & Etkin, N. L. in Hemoglobin and Red Cell Structure and Function (ed. Brewer, G. J.) 121–130 (Plenum, New York, 1972).

    Book  Google Scholar 

  14. Cohen, G. in Erythrocyte Structure and Function (ed. Brewer, G. J.) 685–698 (Liss, New York, 1975).

    Google Scholar 

  15. Livingstone, F. B. A. Rev. Genet. 5, 33–64 (1971).

    Article  Google Scholar 

  16. Martin, S. K. et al. Lancet i, 524–526 (1979).

    Article  Google Scholar 

  17. Cohen, G. & Hochstein, P. Science 134, 1756–1757 (1961).

    Article  ADS  CAS  Google Scholar 

  18. Trager, W. Acta Tropica 14, 289–301 (1957).

    CAS  PubMed  Google Scholar 

  19. Alan, D. W., Johnson, G. J., Cadman, S. & Kaplan, M. E. J. Lab. clin. Med. 91, 321–327 (1978).

    Google Scholar 

  20. Luzatto, L., Usanga, E. A. & Reddy, S. Science 164, 839–842 (1969).

    Article  ADS  Google Scholar 

  21. Miller, A. & Smith, H. C. Br. J. Haemat. 19, 417–428 (1970).

    Article  CAS  Google Scholar 

  22. Friedman, M. J., Roth, E. F., Nagel, R. L. & Trager, W. Exp Parasit. 47, 73–80 (1979).

    Article  CAS  Google Scholar 

  23. Friedman, M. J. Blood 52, suppl. 1, 96 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FRIEDMAN, M. Oxidant damage mediates variant red cell resistance to malaria. Nature 280, 245–247 (1979). https://doi.org/10.1038/280245a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280245a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing