Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations

Abstract

Ice streams drain much of the interior West Antarctic Ice Sheet and buffer the main ice reservoir from oceanic influences1,2. The slow-flowing interior feeds the floating Ross Ice Shelf with ice via fast-flowing ice streams3 that are believed to modulate sea-level change through their control of inland ice storage. Understanding ice-stream behaviour, and predicting the response to climate change4, requires a better knowledge of the subglacial geology5,6. It is known that a thawed ice-bed and high-pressure basal water are necessary, but not sufficient, conditions to cause ice streaming7,8. Moreover, it has been hypothesized that a soft sedimentary bed is also required, because of its intrinsic low frictional resistance to flow9, and owing to its high erodibility so as to generate till that can deform and lubricate ice motion10,11, or to bury rough features and smooth the bed for sliding. Here we use seismic observations to provide evidence that one margin of the upglacier part of an ice stream is directly above the boundary of a basin with such sedimentary fill. The ice stream is within the basin and the ice outside the basin is slow-flowing. The basin fill presents an order-of-magnitude lower frictional resistance to ice flow than the subglacial material outside the basin. We conclude that the ice stream position is dependent on subglacial geology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location map showing the ice stream boundaries and the experiment profile line, together with ice flow speeds and ice thickness along that line.
Figure 2: Common shot gather for a shot at SP = Km 51.0.
Figure 3: Mean residuals 〈δ(SP,Δ)〉 = tmodtr between the model and the data are plotted at the shotpoint (SP).
Figure 4: The final models from the ice/sediment/basement model-inversions.

Similar content being viewed by others

References

  1. Hughes, T. J. The West Antarctic Ice Sheet: instability, disintegration, and initiation of ice ages. Rev. Geophys. 13, 502–526 (1975).

    Article  ADS  Google Scholar 

  2. Mercer, J. H. West Antarctic ice sheet and CO2greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

    Article  ADS  Google Scholar 

  3. Rose, K. Characteristics of ice flow in Marie Byrd Land, Antarctica. J. Glaciol. 24, 63–74 (1979).

    Article  ADS  Google Scholar 

  4. Anandakrishnan, S. & Alley, R. B. Stagnation of ice stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24(3),265–268 (1997).

    Article  ADS  Google Scholar 

  5. Blankenship, D. D. et al. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability. Nature 361, 526–529 (1993).

    Article  ADS  Google Scholar 

  6. Boulton, G. S. Theory of glacial erosion, transport and deposition as a consequence of sub-glacial sediment deformation. J. Glaciol. 42(140),43–62 (1996).

    Article  ADS  Google Scholar 

  7. Anandakrishnan, S. & Alley, R. B. Ice stream C, Antarctica, sticky-spots detected by micro-earthquake monitoring. Ann. Glaciol. 20, 183–186 (1994).

    Article  ADS  Google Scholar 

  8. Alley, R. B., Anandakrishnan, S., Bentley, C. R. & Lord, N. Awater-piracy hypothesis for the stagnation of ice stream C, Antarctica. Ann. Glaciol. 20, 187–194 (1994).

    Article  ADS  Google Scholar 

  9. Boulton, G. S. & Jones, A. S. Stability of temperate ice caps and ice sheets resting on beds of deformable sediment. J. Glaciol. 24(90),29–43 (1979).

    Article  ADS  Google Scholar 

  10. Blankenship, D. D., Bentley, C. R., Rooney, S. T. & Alley, R. B. Seismic measurements reveal a saturated, porous layer beneath an active Antarctic ice stream. Nature 322, 54–57 (1986).

    Article  ADS  Google Scholar 

  11. Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).

    Article  ADS  Google Scholar 

  12. Hodge, S. M. & Doppelhammer, S. K. Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica. J. Geophys. Res. 101(C3),6669–6677 (1996).

    Article  ADS  Google Scholar 

  13. Bell, R. E. et al. Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature 394, 58–62 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Telford, W. M., Geldart, L. P., Sheriff, R. E. & Keys, D. A. Applied Geophysics (Cambridge Univ. Press, 1976).

    Google Scholar 

  15. Anandakrishnan, S., Blankenship, D. D., Alley, R. B. & Bentley, C. R. Density–depth profile determined by seismic-refraction studies: ice stream B, West Antarctica. Ann. Glaciol. 11, 198 (1988).

    Article  ADS  Google Scholar 

  16. Alley, R. B. & Bentley, C. R. Ice-core analysis on the Siple Coast of West Antarctica. Ann. Glaciol. 11, 1–7 (1988).

    Article  ADS  Google Scholar 

  17. Zelt, C. A. & Ellis, R. M. Practical and efficient ray tracing in two-dimensional media for rapid traveltime and amplitude forward modeling. Can. J. Exp. Geophys. 24, 16–31 (1988).

    Google Scholar 

  18. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes in C. The Art of Scientific Computing (Cambridge Univ. Press, 1988).

    MATH  Google Scholar 

  19. Zelt, C. A. & Smith, R. B. Seismic traveltime inversion for a 2-D crustal velocity structure. Geophys. J. Int. 108(1),16–34 (1992).

    Article  ADS  Google Scholar 

  20. Clarke, T. S., Burkholder, P. D., Smithson, S. B. & Bentley, C. R. in The Antarctic Region: Geological Evolution and Processes 485–493 (Terra Antarctica Publication, Siena, Italy, 1997).

    Google Scholar 

  21. Rooney, S. T., Blankenship, D. D., Alley, R. B. & Bentley, C. R. Till beneath ice stream B. 2. Structure and continuity. J. Geophys. Res. 92(B9),8913–8920 (1987).

    Article  ADS  Google Scholar 

  22. Raymond, C. F. Shear margins in glaciers and ice sheets. J. Glaciol. 42(140),90–102 (1996).

    Article  ADS  Google Scholar 

  23. Paterson, W. S. B. The Physics of Glaciers 2nd edn (Pergamon, Oxford, 1981).

    Google Scholar 

  24. Robin, G. deQ. Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol. 2, 523–532 (1955).

    Article  ADS  Google Scholar 

  25. Whillans, I. M. & Bindschadler, R. A. Mass balance of ice stream B, West Antarctica. Ann. Glaciol. 11, 187–193 (1988).

    Article  ADS  Google Scholar 

  26. Sclater, J. G., Jaupart, C. & Galson, D. The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys. Space Phys. 18, 269–311 (1980).

    Article  ADS  Google Scholar 

  27. Whillans, I. M. in The Climatic Record in Polar Ice sheets, a Study of Isotopic and Temperature Profiles in Polar Ice Sheets (ed. Robin, G. de Q.) 70–76 (Cambridge Univ. Press, 1983).

    Google Scholar 

  28. Rooney, S. T., Blankenship, D. D., Alley, R. B. & Bentley, C. R. in Seismic reflection profiling of a sediment-filled graben beneath ice stream B, West Antarctica. Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.) 261–265 (Cambridge Univ. Press, 1991).

  29. Behrendt, J. C. et al. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts (?) in the West Antarctic rift system. Geology 22, 527–530 (1994).

    Article  ADS  Google Scholar 

  30. Brozena, J. M. et al. CASERTZ 1991 and 1992: gravity and surface topography. Antarct. J. US 10, 1–3 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank A. M. Smith, the British Antarctic Survey, S. Saustrup, UNAVCO, ASA, VXE-6, Fjord Instruments, and Landmark Graphics for assistance. We thank the US National Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anandakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anandakrishnan, S., Blankenship, D., Alley, R. et al. Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature 394, 62–65 (1998). https://doi.org/10.1038/27889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27889

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing