Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is there a correction mechanism in the 5S multigene system?

Abstract

RIBOSOMAL GENES are present in many copies per cell in all living species. They are the classic example of the tandemly repeated multigene system, and have been studied in a wide variety of organisms, including man1,2, Drosophila3,4, Xenopus5,6 and Escherichia coli7. Reiteration of these genes is presumably necessary to ensure the production of the large amounts of ribosomal and 5S RNA required for use in the ribosomes. However, the possession of multiple copies of a gene poses a special problem for evolution. If a lethal or deleterious mutation occurred in one gene of, for example, the 24,000 present for the 5S DNA in Xenopus5, this would have no selective disadvantage for the organism. What then prevents the accumulation of lethal mutations in such a system? Presumably if the number of effective genes were reduced significantly natural selection would operate. But it has been suggested that a ‘correction mechanism’8 exists to maintain the homogeneity of the multigene system without a requirement for natural selection. We show here that two cloned repeats of Xenopus oocyte 5S DNA are very similar but not identical in sequence. The similarity strongly suggests that a correction mechanism is operating, but it is not so precise as to cause the different repeats to be identical. A small but distinct degree of heterogeneity is tolerated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Steffensen, D. M., Duffy, P. & Prensky, W. Nature 252, 741–743 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Henderson, A. S., Warburton, D. & Atwood, K. C. Proc. natn. Acad. Sci. U. S. A. 69, 3394–3398 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Tartoff, K. D. & Perry, P. P. J. molec. Biol. 51, 171–183 (1970).

    Article  Google Scholar 

  4. Tartoff, K. D. & Dawid, I. B. Nature 263, 27–30 (1976).

    Article  ADS  Google Scholar 

  5. Brown, D. D., Wensink, P. C. & Jordan, E. Proc. natn. Acad. Sci. U. S. A. 68, 3175–3179 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Brown, D. D. & Weber, C. S. J. molec. Biol. 34, 661–680 (1968).

    Article  CAS  Google Scholar 

  7. Doolittle, W. F. & Pace, N. R. Proc. natn. Acad. Sci. U. S. A. 68, 1786–1790 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Brown, D. D., Wensink, P. C. & Jordan, E. J. molec. Biol. 63, 57–73 (1972).

    Article  CAS  Google Scholar 

  9. Callan, H. G. J. Cell Sci. 2, 1–7 (1967).

    CAS  Google Scholar 

  10. Carroll, D. & Brown, D. D. Cell 7, 477–486 (1976).

    Article  CAS  Google Scholar 

  11. Smith, G. P. Cold Spring Harb. Symp. quant. Biol. 38, 507–514 (1973); Science 191, 528–535 (1976).

    Article  Google Scholar 

  12. Wegnez, M., Monier, R. & Denis, H. FEBS Lett. 25, 13–20 (1972).

    Article  CAS  Google Scholar 

  13. Ford, P. J. & Southern, E. M. Nature new Biol. 241, 7–12 (1973).

    Article  CAS  Google Scholar 

  14. Ford, P. J. & Brown, R. D. Cell 8, 485–493 (1976).

    Article  CAS  Google Scholar 

  15. Fedoroff, N. V. & Brown, D. D. Cell, 13, 701–716 (1978).

    Article  CAS  Google Scholar 

  16. Miller, J. R., Cartwright, E. M., Brownlee, G. G., Fedoroff, N. V. & Brown, D. D. Cell 13, 717–725 (1978).

    Article  CAS  Google Scholar 

  17. Benhamou, J., Jourdan, R. & Jordan, B. R. J. molec. Evol. 9, 279–298 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U. S. A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Sanger, F. & Coulson, A. R. FEBS Lett. 87, 107–110 (1978).

    Article  CAS  Google Scholar 

  20. Dayhoff, M. O. Atlas of Protein Sequence and Structure 5, 48 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MILLER, J., BROWNLEE, G. Is there a correction mechanism in the 5S multigene system?. Nature 275, 556–558 (1978). https://doi.org/10.1038/275556a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275556a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing