Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Comparison of the evolution rates of cytosolic and mitochondrial aspartate aminotransferase

Abstract

TWO isoenzymes of aspartate aminotransf erase (AAT) occur in animal and possibly in all eukaryotic cells, one in the cytosol (cAAT) and the other in the mitochondria (mAAT)1. Both isoenzymes are composed of two identical polypeptide chains of about 400 amino acid residues and their reaction mechanisms and kinetic features are essentially the same1,2. They are homologous proteins, as evidenced by 48% sequence identity of the two isoenzymes from pig3,4, and are both coded for by nuclear DNA and synthesised by cytosolic ribosomes5–7. Comparison of the isoenzymes from pig with those from chicken by quantitative microcomplement fixation has shown that the interspecies similarity of the mitochondrial isoenzymes markedly exceeds that of the cytosolic isoenzymes8. The same conclusion has been reached by comparison of the known amino acid sequences of the pig isoenzymes3,4 with the chicken isoenzymes, for which more than half of their sequences have already been determined. The sequence identity of the two cytosolic isoenzymes seems to be approximately 50% (Y. M. Torchinsky, personal communication), whereas that of the two mitochondrial isoenzymes is about 85% (ref. 9 and U. Hausner, P. C., K. J. Wilson, unpublished). In the present study, the immunological interspecies comparison of the two isoenzymes was extended to species of all vertebrate classes. The evolution of the two compartmented isoenzymes was found to have proceeded at identical and constant rates throughout the development of the nonmammalian vertebrates. After the emergence of mammals, however, the rate of evolution of the cytosolic isoenzyme more than doubled while its mitochondrial counterpart retained the slower rate of the nonmammalian vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Braunstein, A. E. in The Enzymes, Vol. 9, 3rd edn (ed. Boyer, P. D.) 379–481 (Academic, New York, 1973).

    Google Scholar 

  2. Gehring, H., Rando, R. R. & Christen, P. Biochemistry 16, 4832–4836 (1977).

    Article  CAS  Google Scholar 

  3. Ovchinnikow, Yu.A. et al. FEBS Lett. 29, 31–34 (1973).

    Article  Google Scholar 

  4. Kagamiyama, H., Sakakibara, R., Wada, H., Tanase, S. & Morino, Y. J. Biochem. 82, 291–294 (1977).

    Article  CAS  Google Scholar 

  5. van Heyningen, V., Craig, I. W. & Bodmer, W. F. in The Biogenesis of Mitochondria (eds Kroon, A. M. & Saccone, C.) 231–244 (Academic, New York, 1974).

    Book  Google Scholar 

  6. Davidson, R. G., Cortner, J. A., Rattazzi, M. C., Ruddle, F. H. & Lubs, H. A. Science 169, 391–392 (1970).

    Article  ADS  CAS  Google Scholar 

  7. Schatz, G. & Mason, T. L. A. Rev. Biochem. 43, 51–87 (1974).

    Article  CAS  Google Scholar 

  8. Sonderegger, P., Gehring, H. & Christen, P. J. biol. Chem. 252, 609–612 (1977).

    CAS  PubMed  Google Scholar 

  9. Gehring, H., Wilson, K. J. & Christen, P. Biochem. biophys. Res. Commun. 67, 73–78 (1975).

    Article  CAS  Google Scholar 

  10. Champion, A. B., Prager, E. M., Wachter, D. & Wilson, A. C. in Biochemical and Immunological Taxonomy of Animals (ed. Wright, C. A.) 397–416 (Academic, New York, 1974).

    Google Scholar 

  11. Ruoslahti, E. & Wigzell, H. Nature 255, 716–717 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Reichlin, M. & Noble, R. W. in Immunochemistry of Proteins, Vol. 2 (ed. Atassi, M. Z.) 311–351 (Plenum, New York, 1977).

    Book  Google Scholar 

  13. Ziswiler, V. Wirbeltiere, Vols 1, 2 (Georg Thieme, Stuttgart, 1976).

    Google Scholar 

  14. Prager, E. M. & Wilson, A. C. J. biol. Chem. 246, 5978–5989 (1971).

    CAS  PubMed  Google Scholar 

  15. Champion, A. B., Soderberg, K. L., Wilson, A. C. & Ambler, R. P. J. molec. Evol. 5, 291–305 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Wilson, A. C., Carlson, S. S. & White, T. H. A. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  Google Scholar 

  17. Kitto, G. B., Kottke, M. E., Bertland, L. H., Murphey, W. H. & Kaplan, N. O. Archs Biochem. Biophys. 121, 224–232 (1967).

    Article  CAS  Google Scholar 

  18. Reed, R. E. & Hess, J. L. J. biol. Chem. 250, 4456–4461 (1975).

    CAS  PubMed  Google Scholar 

  19. Goodman, M., Moore, G. W. & Matsuda, G. Nature 253, 603–608 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Dickerson, R. E. J. molec. Evol. 1, 26–45 (1971).

    Article  ADS  CAS  Google Scholar 

  21. Gehring, H. et al. J. molec. Biol. 115, 97–101 (1977).

    Article  CAS  Google Scholar 

  22. Arnone, A. et al. J. molec. Biol. 112, 509–513 (1977).

    Article  CAS  Google Scholar 

  23. Borisov, V. V. et al. Dokl. Akad. Nauk SSSR 235, 212–215 (1977).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SONDEREGGER, P., CHRISTEN, P. Comparison of the evolution rates of cytosolic and mitochondrial aspartate aminotransferase. Nature 275, 157–159 (1978). https://doi.org/10.1038/275157a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275157a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing