Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic differentiation during speciation

Abstract

SPECIATION theory is still largely descriptive. How many and what kind of genes are implicated in speciation is a central unresolved problem of evolutionary biology1,2. Does speciation require major genomic changes3–5 or may minor ones suffice1,6–9? Similarly, does speciation depend on structural or on regulatory genes10? We have investigated these questions with reference to the actively speciating fossorial mole rats of the Spalax ehrenbergi complex in Israel, which comprises four morphologically indistinguishable chromosome forms (2n = 52, 54, 58, 60)11 adapted in that order to increasing aridity12. Narrow hybrid zones between karyotypes13 and mate selection14 (through olfaction15, vocalisation16 and aggression17) suggest that the recently18 formed species represent progressive stages of final speciation13. Genic diversity proved low, and genic similarity between karyotypes very high, in the previous test based on 17 gene loci of tissue proteins8. The test of eight additional loci of blood proteins, which is reported here, reinforces earlier conclusions and sheds light on the allozyme–environment association and on the amount of genetic differentiation during speciation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1974).

    Google Scholar 

  2. Bush, G. L. in A. Rev. Ecol. Systemat. 6, 339–364 (1975).

    Article  Google Scholar 

  3. Dobzhansky, T. Genetics of the Evolutionary Process (Columbia University Press, New York, 1971).

    Google Scholar 

  4. Mayr, E. Populations, Species and Evolution (Harvard University Press, Cambridge 1970).

    Google Scholar 

  5. Avise, F. C. in Molecular Evolution (ed. Ayala, F. J.) 106–122 (Sinauer Associates, 1976).

    Google Scholar 

  6. Hubby, J. L. & Throckmorton, L. H. Genetics 52, 203–215 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hubby, J. L. & Throckmorton, L. H. Am. Nat. 102, 193–205 (1968).

    Article  CAS  Google Scholar 

  8. Nevo, E. & Shaw, R. C. Biochem. Genet. 7, 235–241 (1972).

    Article  CAS  Google Scholar 

  9. Nevo, E., Kim, Y. J., Shaw, R. C. & Thaeler, C. S. Jr Evolution 28, 1–23 (1974).

    Article  Google Scholar 

  10. Wilson, A. C., Sarich, V. M. & Maxson, L. R. Proc. natn. Acad. Sci. U.S.A. 71, 3028–3030 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Wahrman, J., Goitein, R. & Nevo, E. Science 164, 82–84 (1969).

    Article  ADS  CAS  Google Scholar 

  12. Nevo, E. & Shkolnik, A. Experientia 30, 724–726 (1974).

    Article  CAS  Google Scholar 

  13. Nevo, E. & Bar-El, H. Evolution 30, 831–840 (1976).

    Article  Google Scholar 

  14. Nevo, E. & Heth, G. Experientia 32, 1509–1510 (1976).

    Article  CAS  Google Scholar 

  15. Nevo, E., Bodmer, M. & Heth, G. Experientia 32, 1511–1512 (1976).

    Article  CAS  Google Scholar 

  16. Capranica, R. R., Moffat, A. J. & Nevo, E. J. acoust. Soc. Am. (October 1973).

  17. Nevo, E., Naftali, G. & Guttman, R. Proc. natn. Acad. Sci. U.S.A. 72, 3250–3254 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Nevo, E. & Sarich, V. Israel J. Zool. 23, 210–211 (1974).

    Google Scholar 

  19. Nei, M. Am. Nat. 106, 283–291 (1972).

    Article  Google Scholar 

  20. Nevo, E. Theor. Pop. Biol. 13, 121–177 (1978).

    Article  CAS  Google Scholar 

  21. Patton, J. L. & Yang, S. Y. Evolution 31, 697–720 (1977).

    Article  Google Scholar 

  22. Soule, M. in Molecular Evolution (ed. Ayala, F. J.) 60–77 (Sinauer, Stamford, Connecticutt, 1976).

    Google Scholar 

  23. Nei, M. Am. Nat. 105, 385–398 (1971).

    Article  CAS  Google Scholar 

  24. Tchernov, E. Succession of Rodent Faunas during the Upper Pleistocene of Israel (Parey, Hamburg, 1968).

    Google Scholar 

  25. Ayala, F. J. in Evolutionary Biology (eds. Dobzhansky, T., Hecht, M. K. & Steere, W. C.) 8, 1–78 (Plenum, New York, 1975).

    Google Scholar 

  26. Dobzhansky, T. Science 177, 664–669 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NEVO, E., CLEVE, H. Genetic differentiation during speciation. Nature 275, 125–126 (1978). https://doi.org/10.1038/275125a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275125a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing