Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HGPRT activity changes in preimplantation mouse embryos

Abstract

TO compensate for unequal doses of genes on the X chromosomes of males and females, one of the X chromosomes in the somatic cells of mammalian females is inactive1. This inactivation occurs early in development, although the exact time is unknown2. Before X-chromosome inactivation, and in the absence of other dosage compensating mechanisms, female embryos with two X chromosomes would be expected to have twice as much activity for an X-linked enzyme as male embryos with only one X chromosome. In a litter with approximately an equal number of male and female embryos, the distribution of enzyme activity should have two equal-sized peaks separated by a factor of two. The change from a bimodal to unimodal distribution would indicate that X-chromosome inactivation had occurred. Early in development, the X-linked enzymes α-galactosidase (α-gal)3 and hypoxanthine guanine phosphoribosyltransferase (HGPRT)4,5 are both derived from embryonic gene activity. α-gal was found to have a bimodal distribution at the morula stage3. For HGPRT, Monk and Kathuria6 found no bimodality at either the eight-cell or blastocyst stages, however further analysis revealed bimodality at certain stages7. Epstein et al.8 have found that females have twice as much HGPRT activity as males in early blastocysts. We present here evidence for the activity of both the maternal and paternal X chromosomes by the eight-cell stage, with inactivation initiated at blastulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lyon, M. F. Biol. Rev. 47, 1–35 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Gartler, S. M. & Andina, R. J. Adv. hum. Genet. 7, 99–140 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Adler, D. A., West, J. D. & Chapman, V. M. Nature 267, 838–839 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Epstein, C. J. J. biol. Chem. 245, 3289–3294 (1970).

    CAS  PubMed  Google Scholar 

  5. Epstein, C. J. Science 175, 1467–1468 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Monk, M. & Kathuria, H. Nature 270, 599–601 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Monk, M. in Proc. Conf. on Genetic Mosaics and Chimeras in Mammals (ed. Russell, L.) Oak Ridge (in the press).

  8. Epstein, C. J., Smith, S., Travis, B. & Tucker, G. Nature 274, 500–503 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Eklund, J. & Bradford, G. E. Genetics 85, 529–542 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brinster, R. L. Biochem. Genet. 9, 187–191 (1973).

    Article  CAS  PubMed  Google Scholar 

  11. Wudl, L. & Chapman, V. M. Dev. Biol. 48, 104–109 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Krco, C. J. & Goldberg, E. H. Science 193, 1134–1135 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Muggleton-Harris, A. L. & Johnson, M. H. J. Embryol. exp. Morph. 35, 59–79 (1976).

    CAS  PubMed  Google Scholar 

  14. DeMars, R. Natn. Cancer Inst. Monogr. 26, 327–351 (1967).

    CAS  Google Scholar 

  15. Takagi, N. Expl Cell Res. 86, 127–135 (1974).

    Article  CAS  Google Scholar 

  16. Mukherjee, A. A. Proc. natn. Acad. Sci. U.S.A. 73, 1608–1611 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Nesbitt, M. N. Devl Biol. 26, 252–263 (1971).

    Article  Google Scholar 

  18. Deol, M. S. & Whitten, N. K. Nature new Biol. 240, 277–279 (1972).

    Article  CAS  PubMed  Google Scholar 

  19. Takagi, N. & Sasaki, M. Nature 256, 640–642 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. West, J. D., Frels, W. I. Chapman, V. M. & Papaioannou, V. E. Cell 12, 873–882 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Randerath, K. Thin layer Chromatography, 2nd edn., 229–234 (Academic, New York, 1966).

    Google Scholar 

  22. Hosmer, D. W. thesis, Univ. Washington (1972).

  23. Day, N. E. Biometrika 56, 463–474 (1969).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KRATZER, P., GARTLER, S. HGPRT activity changes in preimplantation mouse embryos. Nature 274, 503–504 (1978). https://doi.org/10.1038/274503a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274503a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing