Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolism of the abyssopelagic rattail Coryphaenoides armatus measured in situ

Abstract

MEASUREMENTS of the oxygen consumption of two common benthopelagic fishes, Coryphaenoides acrolepis and Eptatretus deani, made in situ at 1,230 m in the San Diego Trough1 have indicated low respiration rates. The metabolic measurements reported here for the rattail, Coryphaenoides (Nematonurus) armatus (Hector), at 3,650 m support the earlier findings of low respiration rates in deep-sea rattails. They also support the physiological axiom that respiration increases as a fractional power of body weight in animals2–4. Both the metabolic rate and chemical composition of C. armatus suggest an adaptation to a food-limited deep-sea environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, K. L. & Messier, R. R. Science 184, 72–73 (1974).

    Article  ADS  Google Scholar 

  2. Zeuthen, E. C. r Lab. Carlsb. Ser. Chim. 26, 15–161 (1947); Q. Rev. Biol. 28, 1–12 (1953).

    Google Scholar 

  3. Hemmingsen, A. M. Rep. Steno Hasp. Copenhagen 4, 7–58 (1950); 9 (1960).

    Google Scholar 

  4. Prosser, C. L. Comparative Animal Physiology (Saunders, Philadelphia, 1973).

    Google Scholar 

  5. Iwamoto, T. & Stein, D. L. Occas. Pap. Calif. Acad. Sci. 111, 1–79 (1974).

    Google Scholar 

  6. Marshall, N. B. & Iwamoto, T. in Fishes of the Western North Atlantic (Sears Foundation for Marine Research, 1973).

    Google Scholar 

  7. Haedrich, R. L. & Rowe, G. T. Nature 269, 141–142 (1977).

    Article  ADS  Google Scholar 

  8. Haedrich, R. L. & Henderson, N. R. Deep-Sea Res. 21, 739–744 (1974).

    Google Scholar 

  9. Pearcy, W. G. & Ambler, J. W. Deep-Sea Res. 21, 745–759 (1974).

    Google Scholar 

  10. Smith, K. L., Jr, White, G. A., Laver, M. B., McConnaughey, R. R. & Meador, J. P. Deep-Sea Res. (in the press).

  11. Smith, K. L. et al. Limnol Oceanogr, 21, 164–170 (1976).

    Article  ADS  Google Scholar 

  12. Smith, K. L., White, G. A., Laver, M. B. & Haugsness, J. A. Limnol. Oceanogr. (in the press).

  13. Kanwisher, J. Limnol. Oceanogr. 4, 210–217 (1959).

    Article  ADS  CAS  Google Scholar 

  14. Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Sea Water Analysis (Fisheries Research Board of Canada, Ottawa, 1972).

    Google Scholar 

  15. Shibko, S., Koivistoinen, P., Tratnyek, C. A., Newhall, A. R. & Friedman, L. Analyt. Biochem. 19, 514–528 (1967).

    Article  CAS  Google Scholar 

  16. Smith, K. L., Harbison, G. R., Rowe, G. T. & Clifford, C. H. J. Fish. Res. Bd Can. 32, 1607–1612 (1975).

    Article  CAS  Google Scholar 

  17. Patton, S. & Thomas, A. J. J. Lipid Res. 12, 331–335 (1971).

    CAS  PubMed  Google Scholar 

  18. Saunders, R. L. J. Fish. Res. Bd Can. 20, 373–386 (1963).

    Article  Google Scholar 

  19. Poulson, T. L. Am. Midl. Nat. 70, 257–290 (1963).

    Article  Google Scholar 

  20. Forster, R. P. & Goldstein, L. in Fish Physiology (eds Hoar, W. S. & Randall, D. J.) (Academic, New York, 1969).

    Google Scholar 

  21. Wood, J. D. Can. J. Biochem. Physiol. 36, 1237–1242 (1958).

    Article  CAS  Google Scholar 

  22. Love, R. M. The Chemical Biology of Fishes (Academic, New York, 1970).

    Google Scholar 

  23. Dambergs, N. J. Fish. Res. Bd Can. 20, 909–918 (1963).

    Article  CAS  Google Scholar 

  24. Bligh, E. G. & Scott, M. A. J. Fish. Res. Bd Can. 23, 1025–1036 (1966).

    Article  CAS  Google Scholar 

  25. Beamish, F. W. H. J. Fish. Res. Bd Can. 25, 837–851 (1968).

    Article  CAS  Google Scholar 

  26. Childress, J. J. & Nygaard, M. H. Deep-Sea Res. 20, 1093–1109 (1973).

    CAS  Google Scholar 

  27. McLellan, T. Deep-Sea Res. 24, 1019–1036 (1977).

    Article  ADS  Google Scholar 

  28. Childress, J. J. & Nygaard, M. H. Mar. Biol. 27, 225–238 (1974).

    Article  CAS  Google Scholar 

  29. Black, E. C., Robertson, A. C. & Parker, R. R. in Comparative Physiology of Carbohydrate Metabolism in Heterothermic Animals (ed. Martin, A. W.), University of Washington Press, Seattle, 1961).

    Google Scholar 

  30. Tomlinson, N. & Geiger, S. E. J. Fish. Res. Bd Can. 19, 997–1003 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SMITH, K. Metabolism of the abyssopelagic rattail Coryphaenoides armatus measured in situ. Nature 274, 362–364 (1978). https://doi.org/10.1038/274362a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274362a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing