Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Facultative sex ratios and population dynamics

Abstract

THE theory of R. A. Fisher1 for the effect of natural selection on the sex ratio predicts the population to be in evolutionary equilibrium when half of the parental reproductive resources are devoted to sons, and half to daughters. Provided that sons and daughters are of equal cost, this implies a sex ratio of ½ males at or near conception, and the result is independent of differential male and female survival after the period of parental care2–5. Most models demonstrating these results assume discrete generations, but some show that they also follow with overlapping generations6–8. These latter models typically assume the population to be in stable age distribution. Here, we relax that assumption, and show that selection can favour genes which result in the temporary overproduction of one or the other sex, under certain general conditions. The conditions are; overlap in generations; different temporal changes in life history expectations for the two sexes; parental ability to vary the sex ratio in response to the life history changes. The results are of interest because stable age distributions are probably uncommon in nature, with fluctuations in survival more the norm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fisher, R. A. The Genetical Theory of Natural Selection (Oxford University Press, 1929).

    MATH  Google Scholar 

  2. Shaw, R. F. & Mohler, J. D. Am. Nat. 87, 337–342 (1953)

    Article  Google Scholar 

  3. Kolman, W. Am. Nat. 94, 373–377 (1960).

    Article  Google Scholar 

  4. Bodmer, W. F. & Edwards, A. W. F. Ann. hum. Gen. 24, 239–244 (1960).

    Article  CAS  Google Scholar 

  5. MacArthur, R. H in Theoretical and Mathematical Biology (eds Waterman T & Morowitz, H.) 388–397 (Blaisdell, Lexington, 1965).

    Google Scholar 

  6. Leigh, E. Am. Nat. 104, 205–210 (1970).

    Article  Google Scholar 

  7. Charnov, E. L. Evolution 29, 366–368 (1975).

    Article  Google Scholar 

  8. Leigh, E. G., Charnov, E. L. & Warner, R. R. Proc. natn. Acad. Sci. U.S.A. 73, 3565–3660 (1976).

    Article  Google Scholar 

  9. Latham, R. M. J. Windl. Mant. Bull., Ottawa 11, 139–149 (1947).

    Google Scholar 

  10. Hamilton, J. B. Recent Prog. Horm. Res. 3, 257–322 (1948).

    CAS  Google Scholar 

  11. Flanders, S. E. Insectes Soc. 3, 325–334 (1956).

    Article  Google Scholar 

  12. Clausen, C. P. J. N.Y. ent. Soc. 47, 1–9 (1939).

    Google Scholar 

  13. Flanders, S. E. Q. Rev. Biol. 21, 135–143 (1946).

    Article  CAS  Google Scholar 

  14. Bouletrean, M. Ent. Exp. Appl. 19, 197–204 (1976).

    Article  Google Scholar 

  15. Hoelscher, C. E. & Vinson, S. B. Ann. ent. Soc. Am. 64, 1373–1376 (1971).

    Article  Google Scholar 

  16. Filipponi, A., Mosna, B. & Petrelli, G. Riv. Parasitt. 32, 193–218 (1972).

    Google Scholar 

  17. Filipponi, A. & Petrelli, G. Riv. Parasitt. 36, 295–308 (1975).

    Google Scholar 

  18. Evans, F. C. J. Mammal. 30, 351–363 (1949).

    Article  Google Scholar 

  19. Petrusewicz, K. Acta theriol. 4, 103–137 (1960).

    Article  Google Scholar 

  20. Krebs, C. J., Gaines, M., Keller, B., Meyers, J. & Tamarin, R. Science 179, 35–41 (1973).

    Article  ADS  CAS  Google Scholar 

  21. Kalela, O. Ann. Zool. Fenn. 8, 452–455 (1971).

    Google Scholar 

  22. Canham, R. P. Can. J. Zool. 48, 809–811 (1970).

    Article  Google Scholar 

  23. Fordham, R. A. Ecology 52, 138–146 (1971).

    Article  Google Scholar 

  24. Nanmov, S. P., Gibet, L. A. & Shatlova, S. P. Zh. obshch. Biol. 30, 673–680 (1967).

    Google Scholar 

  25. Geodakian, V. A., Kosobutsky, V. I. & Bileva, D. S. Genetika 9, 154–163 (1967).

    Google Scholar 

  26. Correns, C. Hanb. Vererbursw. 2, 1–138 (1928).

    Google Scholar 

  27. Rychlewsk, J. & Kazimierez, Z. Acta biol. cracov. 18, 101–114 (1975).

    Google Scholar 

  28. Hertwig, R. Biol. Zbl. 32, 1–146 (1912).

    Google Scholar 

  29. Kuschakewitsch, S. Festschrift R. Hertwig 2, 61–224 (1910).

  30. Huxley, J. S. J. Genet. 10, 265–276 (1920).

    Article  Google Scholar 

  31. James, H. C. Proc. R. ent. Soc. Lond. 12, 92–98 (1937).

    Google Scholar 

  32. Mrsic, W. Arch. Mikr. Anat. 98, 129–209 (1923).

    Google Scholar 

  33. Hannah, A. Z. Ord. Abst. Vererbl. 86, 574–599 (1955).

    CAS  Google Scholar 

  34. Seiler, J. Retz, Arch. Zellforsch. 15, 249–268 (1920).

    Google Scholar 

  35. Volkmann-Rocco, B. Biol. Bull. 142, 520–529 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WERREN, J., CHARNOV, E. Facultative sex ratios and population dynamics. Nature 272, 349–350 (1978). https://doi.org/10.1038/272349a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272349a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing