Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

More evidence that light isomerises the chromophore of purple membrane protein

Abstract

LIGHT absorption by the purple membrane protein (bacterio-rhodopsin) of Halobacterium halobium leads to pumping of protons across the cell membrane1; the resulting proton gradient can in turn be used to make ATP2,3. As in photosynthesis, the energy for this proton pumping must be ultimately derived from the energy of the absorbed photon which is converted into chemical free energy in the formation of the primary photochemical product, bathobacteriorhodopsin or K (refs 4 and 5) (see Fig. 1). On warming, K decays to the photocycle intermediate L and then to M4, which, after warming to higher temperatures, returns to purple membrane protein (PM). The chromophore of the native pigment is all-trans retinal attached to the protein by way of a protonated Schiff base6,7. The question arises : What is the action of light on the chromophore which results in K formation? In earlier papers5,16, we have provided a partial answer to the nature of K by marshalling strong evidence that, as in visual pigments8, the primary effect of light is to isomerise the chromophore. Pettei et al.9 have recently shown using a chromophore extraction method that by the time of M formation, at least part and perhaps all of the chromophores have been isomerised to the 13-cis conformation. Resonance Raman studies of the chromophore of the pigment and its M intermediate also suggest that the chromophore is isomerised from the all-trans to the 13-cis conformation by the time of M formation7. We show here that when M or L is irradiated at −196 °C, their primary photoproducts—M′ or L′—can reform the original pigment when warmed to −90 °C. This property of these new photoproducts can most readily be explained if light has photoisomerised the chromophore of the intermediates back to the conformation originally present in the pigment. Thus, by the L and M intermediates in the photocycle, light has altered the geometry of the chromophore from the all-trans to another geometrical conformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oesterhelt, D. & Stoeckenius, W. Proc. natn. Acad. Sci. U.S.A. 70, 2853–2857 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Danon, A. & Stoeckenius, W. Proc. natn. Acad. Sci. U.S.A. 71, 1234–1238 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Racker, E. & Stoeckenius, W. J. biol. Chem. 219, 662–663 (1974).

    Google Scholar 

  4. Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. Biophys. J. 15, 955–960 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Rosenfeld, T., Honig, B., Ottolenghi, M., Hurley, J. & Ebrey, T. Pure appl. Chem. 49, 341–351 (1977).

    Article  CAS  Google Scholar 

  6. Lewis, A., Spoonhower, J., Bogomolni, R. A., Lozier, R. H. & Stoeckenius, W. Proc. natn. Acad. Sci. U.S.A. 71, 4462–4466 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Aton, B., Doukas, A. G., Callendar, R. H., Becher, B. & Ebrey, T. G. Biochemistry 16, 2995–2999 (1977).

    Article  CAS  Google Scholar 

  8. Kropf, A. & Hubbard, R. Ann. N.Y. Acad. Sci. 74, 266–280 (1958).

    Article  ADS  CAS  Google Scholar 

  9. Pettei, M. J., Yudd, A. P., Nakanishi, K., Henselman, R. & Stoeckenius, W. Biochemistry 16, 1955–1959 (1977).

    Article  CAS  Google Scholar 

  10. Fransen, M. R. et al. Nature 260, 726–727 (1976); Thomson, A. Nature 254, 178–179 (1975); Peters, K., Applebury, M. L. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 74, 3119–3123 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Becher, B. & Ebrey, T. Biophys. J. 17, 185–191 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Kalisky, O., Vri, L. & Ottolenghi, M. Biophys. J. (in the press).

  13. Hess, B. & Kuschmitz, D. FEBS Lett. 74, 20–23 (1977).

    Article  CAS  Google Scholar 

  14. Hubbard, R., Brown, P.K. & Kropf, A. Nature 183, 442–450 (1959).

    Article  ADS  CAS  Google Scholar 

  15. Yoshizawa, T. & Wald, G. Nature 197, 1279–1286 (1963).

    Article  ADS  CAS  Google Scholar 

  16. Becher, B., Tokunaya, F. & Ebrey, T. Biochemistry (in the press).

  17. Hurley, J. B., Ebrey, T., Honig, B. & Ottolenghi, M. Nature 270, 540–543 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HURLEY, J., BECHER, B. & EBREY, T. More evidence that light isomerises the chromophore of purple membrane protein. Nature 272, 87–88 (1978). https://doi.org/10.1038/272087a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272087a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing