Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Actin filaments form the backbone of nemaline myopathy rods

Abstract

NEMALINE myopathy, a congenital neuromuscular disease, is one of several muscle disorders in which apparently abnormal Z lines, or Z line-type structures emanating from Z lines, has been described1–6. There has been considerable speculation concerning the chemical composition and structural arrangement of proteins in nemaline rods2,4,7–12, but these features have remained unclear: part of this uncertainty is related to lack of understanding of the intact Z line. The only Z line constituent for which there is substantial evidence is α-actinin13–16. We have described the preparation and properties of a Ca2+-activated neutral protease (termed CAF) from muscle that is highly specific in its activity towards myofibrillar proteins and structure17,18. Addition of CAF to isolated myofibrils or to teased muscle fibrils releases undegraded α-actinin from the Z line, with no noticeable effect on myosin, actin, or the remaining myofibrillar structure. We report here the use of CAF as a dissection tool to strip away the dense, amorphous component of the nemaline rods, exposing an underlying set of longitudinal filaments running parallel to the long axis of the original rod. Decoration of these filaments with heavy meromyosin19 shows that the longitudinal filaments of nemaline rods are composed of actin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shy, G. M., Engel, W. K., Somers, J. E. & Wanko, T. Brain 86, 793–810 (1963).

    Article  CAS  Google Scholar 

  2. Price, H. M., Gordon, G. B., Pearson, C. M., Munsat, T. L. & Blumberg, J. M. Proc. natn. Acad. Sci. U.S.A. 54, 1398–1406 (1965).

    Article  ADS  CAS  Google Scholar 

  3. Cornog, J. L. & Gonatas, N. K. J. ultrastruct. Res. 20, 433–450 (1967).

    Article  Google Scholar 

  4. Fawcett, D. W. J. Cell Biol. 36, 266–270 (1968).

    Article  CAS  Google Scholar 

  5. MacDonald, R. D. & Engel, A. G. Acta neuropath. 14, 99–107 (1969).

    Article  CAS  Google Scholar 

  6. Fisher, E. R., Wissinger, H. A., Gerneth, J. A. & Danowski, T. S. Arch. Path. 94, 456–460 (1972).

    CAS  PubMed  Google Scholar 

  7. Engel, A. G. & Gomez, M. R. J. Neuropath. exp. Neurol. 26, 601–619 (1967).

    Article  CAS  Google Scholar 

  8. MacDonald, R. D. & Engel, A. G. J. Cell Biol. 48, 431–437 (1971).

    Article  CAS  Google Scholar 

  9. Sugita, H., Masaki, T., Ebashi, S. & Pearson, C. M. Proc. Japan Acad. 50, 237–240 (1974).

    Article  CAS  Google Scholar 

  10. Yamaguchi, M., Cassens, R. G. & Dahl, D. S. Cytobiologie 11, 335–345 (1975).

    Google Scholar 

  11. Sreter, F. A., Astrom, K.-E., Romanul, F. C. A., Young, R. R. & Jones, H. R. J. Neurol. Sci. 27, 99–116 (1976).

    Article  CAS  Google Scholar 

  12. Stromer, M. H., Tabatabai, L. B., Robson, R. M., Goll, D. E. & Zeece, M. G. Expl. Neurol. 50, 402–421 (1976).

    Article  CAS  Google Scholar 

  13. Masaki, T., Endo, M. & Ebashi, S. J. Biochem., Tokyo 62, 630–632 (1967).

    Article  CAS  Google Scholar 

  14. Robson, R. M., Goll, D. E., Arakawa, N. & Stromer, M. H. Biochim. biophys. Acta 200, 296–318 (1970).

    Article  CAS  Google Scholar 

  15. Schollmeyer, J. V. et al. J. Cell Biol. 63, 303a, Abstr. (1974).

    Google Scholar 

  16. Suzuki, A. et al. J. biol. Chem. 251, 6860–6870 (1976).

    CAS  PubMed  Google Scholar 

  17. Dayton, W. R., Goll, D. E., Zeece, M. G., Robson, R. M. & Reville, W. J. Biochemistry 15, 2150–2158 (1976).

    Article  CAS  Google Scholar 

  18. Dayton, W. R., Reville, W. J., Goll, D. E. & Stromer, M. H. Biochemistry 15, 2159–2167 (1976).

    Article  CAS  Google Scholar 

  19. Huxley, H. E. J. molec. Biol. 7, 281–308 (1963).

    Article  CAS  Google Scholar 

  20. Dahl, D. S. & Klutzow, E. W. J. Neurol. Sci. 23, 371–385 (1974).

    Article  CAS  Google Scholar 

  21. Engel, A. G. Mayo Clin. Proc. 41, 713–741 (1966).

    CAS  PubMed  Google Scholar 

  22. Schollmeyer, J. E., Goll, D. E., Robson, R. M. & Stromer, M. H. J. Cell Biol. 59, 306a, Abstr. (1973).

    Google Scholar 

  23. Sugita, H., Masaki, T., Ebashi, S. & Pearson, C. M. in Basic Research in Myology, Proc. II Int. Congr. Muscle Dis. (ed. Kakulas, B. A.) 298–302 (American Elsevier, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

YAMAGUCHI, M., ROBSON, R., STROMER, M. et al. Actin filaments form the backbone of nemaline myopathy rods. Nature 271, 265–267 (1978). https://doi.org/10.1038/271265a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271265a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing