Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Proximity of two tryptophan residues in dihydrofolate reductase determined by 19F NMR

Abstract

NUCLEAR magnetic resonance methods have provided a wealth of information on the conformational and ligand-binding properties of proteins1–3. In such studies, it is necessary to resolve resonances from the ligand or from individual residues of the protein. To achieve this, it is often necessary to resort to isotopic substitution methods such as selective deuteration4,5 or 13C enrichment6–8. An alternative approach is to introduce a fluorine atom (19F) into the system as an NMR probe, either by using fluorine-containing ligands9–11 or by labelling the protein itself. This can be done either by chemical modification12–15 or by the biosynthetic incorporation of selected fluorinated amino acids16–19. We have used this latter approach to prepare Lactobacillus casei dihydrofolate reductase containing either 3-fluoro-tyrosine or 6-fluorotryptophan residues; by measuring the 19F spectra at 94.1 MHz we have characterised the effects of ligand binding on individual tyrosine and tryptophan residues in the protein19. We now report through-space 19F–19F spin–spin coupling in 6-fluorotryptophan containing dihydrofolate reductase which demonstrates that two of the tryptophan residues are in close proximity in the folded structure of the protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dwek, R. A. Nuclear Magnetic Resonance in Biochemistry Ch. 6 (Clarendon, Oxford, 1973).

    Google Scholar 

  2. Roberts, G. C. K. & Jardetzky, O. Adv. Protein Chem. 24, 447–545 (1970).

    Article  CAS  Google Scholar 

  3. Wüthrich, K. NMR in Biological Research, Peptides and Proteins (Elsevier, Amsterdam 1976).

    Google Scholar 

  4. Markley, J. L., Putter, I. & Jardetzky, O. Science 161, 1249–1251 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Feeney, J. et al. Proc. R. Soc. Lond. B. 196, 267–290 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Hunkapiller, M. W., Smallcombe, S. H., Whitaker, D. R. & Richards, J. H. Biochemistry 12, 4732–4743 (1973).

    Article  CAS  Google Scholar 

  7. Browne, D. T., Earl, E. M. & Otvos, J. D. Biochem. biophys. Res. Commun. 72, 398–403 (1976).

    Article  CAS  Google Scholar 

  8. Feeney, J., in New Techniques in Biophysics and Cell Biology 2, Ch. 8 (eds Pain, R. H. & Smith, B. J.) (Wiley, New York, 1975).

    Google Scholar 

  9. Millet, F. & Raftery, M. A. Biochem. biophys. Res. Commun. 47, 625–632 (1972).

    Article  Google Scholar 

  10. Dwek, R. A., Kent, P. W. & Xavier, A. V. Eur. J. Biochem. 23, 343–348 (1971).

    Article  CAS  Google Scholar 

  11. Ashton, H., Capon, B. & Foster, R. L. Chem. Commun. 512–513 (1971).

  12. Bode, J., Blumenstein, M. & Raftery, M. A. Biochemistry 14, 1153–1160 (1975).

    Article  CAS  Google Scholar 

  13. Heustis, W. H. and Raftery, M. A. Biochemistry 14, 1886–1892 (1975).

    Article  Google Scholar 

  14. Bendall, M. R. & Lowe, G. Eur. J. Biochem. 65, 493–502 (1976).

    Article  CAS  Google Scholar 

  15. Critz, W. J. & Martinez-Carrion, M. Biochemistry 16, 1559–1564 (1977).

    Article  CAS  Google Scholar 

  16. Hull, W. E., Sykes, B. D. Biochemistry 15, 1535–1546 (1976).

    Article  CAS  Google Scholar 

  17. Coleman, J. E., Anderson, R. A., Ratcliffe, G. & Armitage, I. M. Biochemistry 15, 5419–5430 (1976).

    Article  CAS  Google Scholar 

  18. Robertson, D. E., Kroon, P. A. & Ho, C. Biochemistry 16, 1443–1451 (1977).

    Article  CAS  Google Scholar 

  19. Kimber, B. J. et al. Biochemistry 16, 3492–3500 (1977).

    Article  CAS  Google Scholar 

  20. Campbell, I. D., Dobson, C. M., Williams, R. J. P. & Wright, P. E. FEBS Lett. 57, 96–99 (1975).

    Article  CAS  Google Scholar 

  21. Ng, S. & Sederholm, H. J. Chem. Phys. 40, 2090–2094 (1964).

    Article  ADS  CAS  Google Scholar 

  22. Petrakis, L., Sederholm, C. H. J. Chem. Phys. 35, 1243–1248 (1961).

    Article  ADS  CAS  Google Scholar 

  23. Jonas, J. J. Chem. Phys. 47, 4884–4888 (1967).

    Article  ADS  CAS  Google Scholar 

  24. Buckingham, A. D. & Cordle, J. E. J. Chem. Soc. Faraday Trans. II, 994–1004 (1974).

    Article  Google Scholar 

  25. Hilton, J. & Sutcliffe, L. H. Prog. NMR Spectroscopy 10, 27–39 (1975).

    Article  Google Scholar 

  26. Hilton, J. & Sutcliffe, L. H. Spectrochim Acta. 32A, 201–213 (1976).

    Article  Google Scholar 

  27. Balaram, P., Bothner-By, A. A. & Dadok, J. J. Am. chem. Soc. 94, 4015–4017 (1972).

    Article  CAS  Google Scholar 

  28. Bothner-By, A. A. & Gassend, R. Ann. N. Y. Acad. Sci. 222, 668–676 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KIMBER, B., FEENEY, J., ROBERTS, G. et al. Proximity of two tryptophan residues in dihydrofolate reductase determined by 19F NMR. Nature 271, 184–185 (1978). https://doi.org/10.1038/271184a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271184a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing