Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of interaction of spectrin and actin by phosphorylation

Abstract

SPECTRIN is a high molecular weight protein located on the cytoplasmic surface of the mammalian erythrocyte membrane, from which it may be readily liberated by extraction with solutions of low ionic strength. It is thought to be a major structural element of the cell and to play a critical part in maintaining its discoid shape and characteristic viscoelastic properties. Birchmeier and Singer1 have shown that changes in the shape of red cell ghosts are associated with the phosphorylation of a single serine residue on one of the two spectrin subunits, and have suggested that this might provide a basis for the well-known control of red cell shape by ATP2. The erythrocyte membrane also contains actin, which is present in approximately equimolar proportions to the spectrin dimer (molecular weight 500,000 (ref. 3)). We have shown previously4 that there is a specific interaction between these two proteins, which reveals itself in the ability of spectrin to provoke the polymerisation of muscle actin in vitro. We show here that this effect depends on the phosphorylation of spectrin. Furthermore, in an undis-persed mixture of spectrin and its cognate actin such phosphorylation causes the formation of a gel. The striking parallel between these results and the previously demonstrated effects of phosphorylation in situ suggests that the shape of the cell is controlled primarily by the actin–spectrin complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Birchmeier, W. & Singer, S. J. J. Cell Biol. 73, 647–659 (1977).

    Article  CAS  Google Scholar 

  2. Makato, N., Nakao, T., Yamazoe, S. Nature 187, 945–946 (1960).

    Article  ADS  Google Scholar 

  3. Gratzer, W. B. & Beaven, G. H. Eur. J. Biochem. 58, 403–409 (1975).

    Article  CAS  Google Scholar 

  4. Pinder, J. C., Bray, D. & Gratzer, W. B. Nature 258, 765–766 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Rubin, C. S., Erlichman, J. & Rosen, O. M. J. biol. Chem. 247, 6135–6139 (1972).

    CAS  PubMed  Google Scholar 

  6. Avruch, J. & Fairbanks, G. Biochemistry 13, 5507–5514 (1974).

    Article  CAS  Google Scholar 

  7. Hosey, M. M. & Tao, M. Biochim. biophys. Acta 482, 348–357 (1977).

    Article  CAS  Google Scholar 

  8. Dodge, J. T., Mitchell, C. & Hanahan, D. J. Archs Biochem. 100, 119–130 (1963).

    Article  CAS  Google Scholar 

  9. Pinder, J. C., Tidmarsh, S. & Gratzer, W. B. Archs Biochem. 172, 654–660 (1976).

    Article  CAS  Google Scholar 

  10. Yu, J., Fischman, D. A. & Steck, T. L. J. supramol. Struct. 1, 233–248 (1973).

    Article  CAS  Google Scholar 

  11. Lazarides, E. & Lindberg, U. Proc. natn. Acad. Sci. U.S.A. 71, 4742–4746 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Hitchcock, S. E., Carlsson, L. & Lindberg, U. Cell 7, 531–542 (1976).

    Article  CAS  Google Scholar 

  13. Garrels, J. I. & Gibson, W. Cell 9, 793–805 (1976).

    Article  CAS  Google Scholar 

  14. Hiller, G. & Weber, K. Nature 266, 181–183 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Hitchcock, S. E. J. Cell Biol. 74, 1–15 (1977).

    Article  CAS  Google Scholar 

  16. Jaenicke, L. Analyt. Biochem. 61, 623–627 (1974).

    Article  CAS  Google Scholar 

  17. Marchesi, V. T. Meth. Enzym. 32, 275–277 (1974).

    Article  CAS  Google Scholar 

  18. Spudich, J. A. & Watt, S. J. J. biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  19. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PINDER, J., BRAY, D. & GRATZER, W. Control of interaction of spectrin and actin by phosphorylation. Nature 270, 752–754 (1977). https://doi.org/10.1038/270752a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270752a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing